Deep Neural Networks with Non-iterative Learning Strategies for Pattern Recognition and Data Agumentation Applicable to Computer Vision and Healthcare

适用于计算机视觉和医疗保健的模式识别和数据论证的具有非迭代学习策略的深度神经网络

基本信息

  • 批准号:
    RGPIN-2020-04757
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The past few years have witnessed a boom of deep networks, including deep auto-encoders, deep convolutional networks, deep recurrent networks, long short-term memory, generative adversarial network (GAN), etc. These methods have recently dramatically pushed forward the state of the art in diverse domains such as language understanding, robotics, game playing, healthcare, among others. However, many application areas require machine learning algorithms that have fast recognition capability. Thus, the applicability of fast learning is exceptionally high. Unfortunately, the currently well-known deep networks use iterative training strategy. With network depth increasing, deep learners require extensive computational power and can take weeks to train, making it difficult for broad applications. Thus, the following issue serves as a motivation: Can we design effective learning algorithms for deep networks in order to improve performance and increase training speed? Furthermore, the deep network itself has unprecedented parameters where a proportional number of examples must be fed. However, the recent deep network-based data augmentation algorithms such as GAN only work for images, but tabular data such as radars, ultrasonic sensors, and biological data can be applied to wide areas. Motivated by the above problems, the goal is to design effective data augmentation algorithms for tabular data generation and re-use the augmented data for deep networks training. My five-year research plan is to design a unified non-iterative learning strategy that can be used in various deep networks, resulting in lower training computational cost and higher performance applicable to data augmentation and pattern recognition. The specific objectives are as follows: 1) Designing non-iterative learning algorithms to train deep networks, including deep convolutional neural network, deep auto-encoder, and generative adversarial network applicable to computer vision and healthcare, resulting in less training computation with better performance. 2) Designing innovative augmentation algorithms that work for tabular data, including biosignal, radar, and physiological signal. Then, reusing the created synthetic tabular data to boost the recognition performance of neural networks. I believe the realization of a complete and efficient learning system is a significant achievement from both a methodological and engineering application perspective. The developed methods will solve the major bottleneck of learning speed in deep networks, which has a striking application perspective in computer vision and healthcare domains. Furthermore, this research program will provide unique opportunities to train HQPs in topics considered highly in-demand by the Canadian AI industry.
在过去的几年里,深度网络蓬勃发展,包括深度自动编码器、深度卷积网络、深度递归网络、长短期记忆、生成对抗网络(GAN)等,这些方法最近极大地推动了语言理解、机器人、游戏、医疗保健等不同领域的技术发展。 然而,许多应用领域需要具有快速识别能力的机器学习算法。因此,快速学习的适用性非常高。不幸的是,目前众所周知的深度网络使用迭代训练策略。随着网络深度的增加,深度学习器需要大量的计算能力,并且可能需要数周的时间来训练,这使得它难以广泛应用。因此,以下问题可以作为动机:我们能否为深度网络设计有效的学习算法,以提高性能并提高训练速度? 此外,深度网络本身具有前所未有的参数,必须提供一定比例的示例。然而,最近基于深度网络的数据增强算法(如GAN)仅适用于图像,但雷达,超声波传感器和生物数据等表格数据可以应用于广泛的领域。受上述问题的启发,我们的目标是设计有效的数据增强算法来生成表格数据,并将增强后的数据重新用于深度网络训练。我的五年研究计划是设计一种统一的非迭代学习策略,可用于各种深度网络,从而降低训练计算成本,提高适用于数据增强和模式识别的性能。具体目标如下:1)设计非迭代学习算法来训练深度网络,包括适用于计算机视觉和医疗保健的深度卷积神经网络,深度自动编码器和生成对抗网络,从而实现更少的训练计算和更好的性能。 2)设计适用于表格数据的创新增强算法,包括生物信号、雷达和生理信号。然后,重用创建的合成表格数据,以提高神经网络的识别性能。 我认为,从方法论和工程应用的角度来看,实现一个完整而有效的学习系统是一个重大成就。所开发的方法将解决深度网络中学习速度的主要瓶颈,在计算机视觉和医疗保健领域具有惊人的应用前景。此外,该研究计划将提供独特的机会,在加拿大人工智能行业高度需求的主题中培训HQP。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang, Yimin其他文献

Dynamic risk prediction models for different subtypes of hypertensive disorders in pregnancy.
  • DOI:
    10.3389/fsurg.2022.1005974
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Zhang, Xinyu;Xu, Qi;Yang, Lin;Sun, Ge;Liu, Guoli;Lian, Cuiting;Li, Ziwei;Hao, Dongmei;Yang, Yimin;Li, Xuwen
  • 通讯作者:
    Li, Xuwen
A Preliminary Study on the Morphological Changes of an NiTi-Shaped Memory Alloy Stent in the Vertebral Body.
  • DOI:
    10.1111/os.13680
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Li, Qiaoling;Ren, Zhiwei;Zhang, Bobo;Yang, Yimin
  • 通讯作者:
    Yang, Yimin
Effects of surface texturing on ring/liner friction under starved lubrication
表面纹理对缺乏润滑下环/衬里摩擦的影响
  • DOI:
    10.1016/j.triboint.2015.10.024
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Gu, Chunxing;Meng, Xianghui;Yang, Yimin
  • 通讯作者:
    Yang, Yimin
Investigation of ancient noodles, cakes, and millet at the Subeixi Site, Xinjiang, China
  • DOI:
    10.1016/j.jas.2010.10.006
  • 发表时间:
    2011-02-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Gong, Yiwen;Yang, Yimin;Jiang, Hongen
  • 通讯作者:
    Jiang, Hongen
Dynamic prediction model of fetal growth restriction based on support vector machine and logistic regression algorithm.
  • DOI:
    10.3389/fsurg.2022.951908
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Lian, Cuiting;Wang, Yan;Bao, Xinyu;Yang, Lin;Liu, Guoli;Hao, Dongmei;Zhang, Song;Yang, Yimin;Li, Xuwen;Meng, Yu;Zhang, Xinyu;Li, Ziwei
  • 通讯作者:
    Li, Ziwei

Yang, Yimin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Deep neural networks
深度神经网络
  • 批准号:
    2902331
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
  • 批准号:
    2340516
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Property-Driven Quality Assurance of Adversarial Robustness of Deep Neural Networks
深度神经网络对抗鲁棒性的属性驱动质量保证
  • 批准号:
    23K11049
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
  • 批准号:
    2239977
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
High-performance deep neural networks for medical image analysis
用于医学图像分析的高性能深度神经网络
  • 批准号:
    10723553
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Imaging Epilepsy Sources with Biophysically Constrained Deep Neural Networks
使用生物物理约束的深度神经网络对癫痫源进行成像
  • 批准号:
    10655833
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Crop design simulator utilizing deep neural networks with crop growth model as knowledge layer
利用深度神经网络以作物生长模型作为知识层的作物设计模拟器
  • 批准号:
    23H02200
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    2311500
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了