Categorical algebra in analysis, geometry, and topology

分析、几何和拓扑中的分类代数

基本信息

  • 批准号:
    RGPIN-2019-05274
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Much of mathematics is concerned with the study of space and quantity, and the relation of each to the other. The notion of space here comprises not only the familiar three-dimensional physical space that surrounds us but also the configurations of various shapes and figures therein, as well as higher-dimensional spaces, and various mathematical concepts of space that abstract from these beginnings. The notion of quantity here includes not only the familiar counting numbers, rational, and real numbers, but also numerical quantities that vary from point to point over a space, such as the temperature at the surface of the earth, and also quantities that are distributed through space, such as the quantity of certain gas distributed through the earth's atmosphere. The mathematical notions of function, measure, and distribution, as well as various other related notions, were devised to represent mathematically such variable and distributed quantities. There are various subtly different mathematical notions of space, such as the notions of topological space, manifold, and variety, each studied by its own branch of mathematics, such as topology, differential geometry, and algebraic geometry. Correspondingly, there are numerous subtly different notions of function and distribution associated with different notions of space, and these notions end up being applied in unexpected ways, e.g. to describe the distribution of likelihood across a space of possible outcomes of an experiment, as in the study of probability and statistics. The proposed research employs the methods of category theory, a general study of structure in mathematics, to identify and understand the common structural characteristics shared by all these subtly different notions of space and quantity, and to develop a system of category-theoretic frameworks, axiomatics, and results that foster a new and unified understanding of structures that generate and characterize variable and distributed quantities in general. This will serve to make the notions and methods of each of various branches of mathematics more accessible to the practitioners of the others, and the insights gained by these structural studies enable new and effective methods in mathematics. Further, these structural studies allow mathematical insights to be more readily transferred to application domains, e.g. in the design of probabilistic programming languages, and they support the effective variation and adaptation of these ideas to that end.***
数学的大部分内容都是关于空间和量的研究,以及它们之间的关系。 这里的空间概念不仅包括我们所熟悉的三维物理空间,而且还包括其中各种形状和图形的配置,以及更高维的空间,以及从这些开始抽象出来的各种空间数学概念。 这里的量的概念不仅包括我们熟悉的计数、有理数和真实的数,而且还包括在空间上逐点变化的数值量,如地球表面的温度,以及在空间中分布的量,如在地球大气中分布的某种气体的量。 函数、测度和分布的数学概念,以及其他各种相关概念,都是为了在数学上表示这些变量和分布量而设计的。 空间的数学概念有许多微妙的不同,例如拓扑空间、流形和簇的概念,每一个概念都有自己的数学分支来研究,例如拓扑学、微分几何和代数几何。 相应地,与不同的空间概念相关联的函数和分布的概念也有许多微妙的不同,这些概念最终以意想不到的方式被应用,例如,在概率和统计学的研究中,描述实验可能结果的空间中的似然分布。 拟议的研究采用范畴论的方法,数学结构的一般研究,以识别和理解所有这些微妙的不同的空间和数量的概念所共有的共同结构特征,并开发一个系统的范畴理论框架,公理和结果,促进了新的和统一的理解结构,产生和表征一般的变量和分布量。 这将有助于使每个不同的数学分支的概念和方法更容易获得其他的从业者,这些结构研究所获得的见解,使新的和有效的数学方法。 此外,这些结构研究使数学见解更容易转移到应用领域,例如在概率编程语言的设计中,它们支持这些想法的有效变化和适应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LucyshynWright, Rory其他文献

LucyshynWright, Rory的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LucyshynWright, Rory', 18)}}的其他基金

Categorical algebra in analysis, geometry, and topology
分析、几何和拓扑中的分类代数
  • 批准号:
    RGPIN-2019-05274
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Categorical algebra in analysis, geometry, and topology
分析、几何和拓扑中的分类代数
  • 批准号:
    RGPIN-2019-05274
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Categorical algebra in analysis, geometry, and topology
分析、几何和拓扑中的分类代数
  • 批准号:
    RGPIN-2019-05274
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Categorical algebra in analysis, geometry, and topology
分析、几何和拓扑中的分类代数
  • 批准号:
    RGPAS-2019-00087
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Categorical algebra in analysis, geometry, and topology
分析、几何和拓扑中的分类代数
  • 批准号:
    RGPAS-2019-00087
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Categorical algebra in analysis, geometry, and topology
分析、几何和拓扑中的分类代数
  • 批准号:
    DGECR-2019-00273
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement
Extensive quantities, integration, and functional analysis in a closed category
封闭类别中的大量数量、集成和功能分析
  • 批准号:
    438967-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Postdoctoral Fellowships
Extensive quantities, integration, and functional analysis in a closed category
封闭类别中的大量数量、集成和功能分析
  • 批准号:
    438967-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Postdoctoral Fellowships

相似国自然基金

李代数的权表示
  • 批准号:
    10371120
  • 批准年份:
    2003
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Graded Symmetry in Algebra and Analysis
代数和分析中的分级对称性
  • 批准号:
    DP230103184
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Projects
Machine Learning Based Differential Mobility Spectrometry Library Development
基于机器学习的差分迁移谱库开发
  • 批准号:
    10696533
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Tensor decomposition methods for multi-omics immunology data analysis
用于多组学免疫学数据分析的张量分解方法
  • 批准号:
    10655726
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152661
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152704
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Categorical algebra in analysis, geometry, and topology
分析、几何和拓扑中的分类代数
  • 批准号:
    RGPIN-2019-05274
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152687
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Noncommutative Functions, Algebra and Operator Analysis
非交换函数、代数和算子分析
  • 批准号:
    2155033
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Neural dynamics and substrates of graphical knowledge
神经动力学和图形知识的基础
  • 批准号:
    10371663
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Neural dynamics and substrates of graphical knowledge
神经动力学和图形知识的基础
  • 批准号:
    10487519
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了