Germanium for next generation photonic and microelectronic devices

用于下一代光子和微电子设备的锗

基本信息

  • 批准号:
    RGPIN-2017-04698
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

With sustained exponential growth, global internet traffic is expected to reach 2.3 zettabytes (2.3x270) by 2020 [2016 Cisco]. However, mainstream short-reach communications and on-chip interconnects have been dominated by metal wires, which are much slower, less energy efficient and hard to scale in size. Optical interconnections via silicon (Si) photonics have been widely recognized as a potential solution to overcome this bottleneck. Germanium (Ge) as the most Si-compatible semiconductor has been the underlying and enabling material for Si photonics. Ge has been widely used in photodetectors and modulators providing a data rate of > 50 Gbps [2015 Chen, 2016 Srinivasan]. For Si-compatible lasers, Ge can be used as 1) transition layers between lasing materials such as InGaAs and AlGaAs and Si [2012 Lee, 2016B Lin, 2016 Liu, 2016 Nakao] due to its small lattice mismatch to them and the ease of integration with Si and 2) a lasing material thanks to bandgap engineering [2010 Liu, 2012 C-A]. On the microelectronics side, Ge has been widely used in SiGe heterojunction bipolar transistors (HBTs) for applications in wireless communications.******We propose the following topics on Ge in Si photonics and microelectronics.******1. It is highly desired to have low defect density Ge films on Si to serve as III-V and Si transition layers. Aspect ratio trapping technology (ART) can produce high quality Ge. However, it needs additional fabrication steps and is inferior in thermal conduction. A low/high temperature (LT/HT) growth method is advantageous over ART in these two aspects. However, the Ge quality is not as good. Arsenic doping has been shown to greatly improve Ge quality [2016 Lee], while impacts from other dopants have not studied. We propose to study doping impacts on Ge quality using LT/HT method for high quality Ge film growth on Si.******2. We propose to study the potential and the optimizations of Ge-on-Si lasers by device modeling and simulations.******3. As higher concentration of Ge is used in HBT base layer, Si-Ge interdiffusion is becoming more problematic. We propose to study the interdiffusion behavior in PNP type HBTs, especially the impacts from phosphorus and carbon and the modeling of these impacts for faster and more energy efficient wireless communication systems.*********The proposed research will enable optoelectronic integrated circuit (OEIC) on Si platforms such as a single-chip optical transceiver, which provides the ability to download movies in seconds and are much cheaper and smaller than the current technology with external lasers. The research outcomes can lead to deeper penetration of optical fiber communications, faster wireless communications and significant advancements in the current information technology hardware industry. We truly believe that the research proposed is at the research frontier and will benefit Canada as a world leader in optical communications and information technology greatly.**
随着持续的指数增长,到2020年,全球互联网流量预计将达到2.3 ZB(2.3x270)[2016思科]。然而,主流的短距离通信和片上互连一直由金属线主导,金属线速度慢得多,能源效率低,尺寸难以扩展。通过硅(Si)光子学的光互连被广泛认为是克服这一瓶颈的潜在解决方案。锗(Ge)作为硅相容程度最高的半导体材料,一直是硅光子学的基础和使能材料。GE已被广泛用于提供50 Gbps数据速率的光电探测器和调制器[2015 Chen,2016斯里尼瓦桑]。对于硅兼容激光器,Ge可以用作1)InGaAs和AlGaAs等激光材料和Si[2012 Lee,2016B Lin,2016 Liu,2016 Nakao]之间的过渡层,因为它与它们的晶格失配很小,并且易于与Si集成;2)由于带隙工程,Ge是一种激光材料[2010 Liu,2012 C-A]。在微电子学方面,Ge已被广泛应用于无线通信中的SiGe异质结双极晶体管(HBT)中。我们就Ge在硅光子学和微电子学中的应用提出了以下主题。1.人们非常希望在Si上制备低缺陷密度的Ge薄膜作为III-V和Si过渡层。纵横比陷阱技术(ART)可以产生高质量的Ge。然而,它需要额外的制造步骤,而且导热性能较差。低温/高温(LT/HT)生长方法在这两个方面都优于ART生长方法。然而,通用电气的质量并不是那么好。砷掺杂已经被证明可以极大地提高Ge的质量[2016 Lee],而其他掺杂剂的影响还没有研究。我们建议使用LT/HT方法研究掺杂对Ge质量的影响,以在Si上生长高质量的Ge薄膜。*2.我们建议通过器件建模和模拟来研究Ge-on-Si激光器的潜力和优化。*3.随着HBT基层中Ge浓度的增加,Si-Ge互扩散变得更加困难。我们建议研究PNP型HBT的互扩散行为,特别是磷和碳的影响,并对这些影响进行建模,以实现更快、更节能的无线通信系统。*该研究将使光电子集成电路(OEIC)能够在硅平台上实现,例如单芯片光收发器,它能够在几秒钟内下载电影,并且比目前使用外部激光器的技术便宜得多,而且体积小得多。研究成果将有助于光纤通信的更深入渗透、更快的无线通信以及当前信息技术硬件行业的重大进步。我们坚信,拟议中的研究处于研究前沿,加拿大作为光通信和信息技术的世界领先者将大大受益。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xia, Guangrui其他文献

Stress Engineering With Silicon Nitride Stressors for Ge-on-Si Lasers
  • DOI:
    10.1109/jphot.2017.2675401
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ke, Jiaxin;Chrostowski, Lukas;Xia, Guangrui
  • 通讯作者:
    Xia, Guangrui
Sub-10 μm-Thick Ge Thin Film Fabrication from Bulk-Ge Substrates via a Wet Etching Method.
  • DOI:
    10.1021/acsomega.3c07490
  • 发表时间:
    2023-12-26
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Wang, Liming;Zhu, Ying;Wen, Rui-Tao;Xia, Guangrui
  • 通讯作者:
    Xia, Guangrui
Gate Leakage Suppression and Breakdown Voltage Enhancement in p-GaN HEMTs Using Metal/Graphene Gates
  • DOI:
    10.1109/ted.2020.2968596
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Zhou, Guangnan;Wan, Zeyu;Xia, Guangrui
  • 通讯作者:
    Xia, Guangrui

Xia, Guangrui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xia, Guangrui', 18)}}的其他基金

Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Germanium for next generation photonic and microelectronic devices
用于下一代光子和微电子设备的锗
  • 批准号:
    RGPIN-2017-04698
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
SiGe and stress technology for next generations of high performance electronic and photonic devices
用于下一代高性能电子和光子器件的 SiGe 和应力技术
  • 批准号:
    372060-2009
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
SiGe and stress technology for next generations of high performance electronic and photonic devices
用于下一代高性能电子和光子器件的 SiGe 和应力技术
  • 批准号:
    372060-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and simulations of SiGe interdiffusion and ion implantation in CSUPREM
CSUPREM 中 SiGe 相互扩散和离子注入的建模和仿真
  • 批准号:
    451484-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
Modeling and simulations of SiGe interdiffusion and ion implantation in CSUPREM
CSUPREM 中 SiGe 相互扩散和离子注入的建模和仿真
  • 批准号:
    451484-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
SiGe and stress technology for next generations of high performance electronic and photonic devices
用于下一代高性能电子和光子器件的 SiGe 和应力技术
  • 批准号:
    372060-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
SiGe and stress technology for next generations of high performance electronic and photonic devices
用于下一代高性能电子和光子器件的 SiGe 和应力技术
  • 批准号:
    372060-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
  • 批准号:
    2335504
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Cooperative Agreement
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
  • 批准号:
    2339753
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
  • 批准号:
    DP240101322
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Projects
Carbon emission oriented next generation building energy management system
以碳排放为导向的下一代建筑能源管理系统
  • 批准号:
    24K20901
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
  • 批准号:
    EP/Y028287/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Fellowship
MagTEM2 - the next generation microscope for imaging functional materials
MagTEM2 - 用于功能材料成像的下一代显微镜
  • 批准号:
    EP/Z531078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Next Generation Glioma Treatments using Direct Light Therapy
使用直接光疗法的下一代神经胶质瘤治疗
  • 批准号:
    10092859
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了