AI Methods for Automated Software Testing
自动化软件测试的人工智能方法
基本信息
- 批准号:544119-2019
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In large companies, software codebase is very large and it is changing really fast. The teams spend a lot of time running tests even for very small changes in the code. To find the exact change that caused tests to fall, developers run every test at every change. However, this is very expensive and very time consuming. Automated testing should help reducing testing time by prioritizing tests that have higher likelihood to detect problems and by clustering tests into groups so that it is not necessary to run all the tests in each group. Clustering and prioritization can be done using modern artificial intelligence (AI) algorithms and this is exactly the objective of this project. Therefore, we are going to collect historical data after running test suite in real environment and then to use this data to train the AI models. Our system will be able to perform online learning even after being deployed.This project has several research challenges including development of AI algorithms, dealing with very large and complex software developed by Ericsson, and dealing with multiprocessing embedded system that runs on multiple boards. The system should improve productivity of software developers in Ericsson significantly. In addition, it has potential to improve productivity of any software developers in Canada saving Canadian companies large amount of money.
在大公司中,软件代码库非常大,而且变化非常快。这些团队花费大量时间运行测试,即使是对代码进行非常小的更改。为了找到导致测试失败的确切更改,开发人员在每次更改时都会运行每个测试。然而,这是非常昂贵和非常耗时的。自动化测试应该有助于减少测试时间,方法是对检测到问题的可能性较高的测试进行优先排序,并将测试分组,这样就不必运行每个组中的所有测试。使用现代人工智能(AI)算法可以完成集群和优先级排序,这正是本项目的目标。因此,我们打算在真实环境中运行测试套后收集历史数据,然后使用这些数据来训练人工智能模型。我们的系统在部署后将能够进行在线学习。该项目面临着几个研究挑战,包括人工智能算法的开发,处理爱立信开发的超大型和复杂的软件,以及处理运行在多个板上的多处理嵌入式系统。该系统应该会显著提高爱立信软件开发人员的生产率。此外,它还有可能提高加拿大任何软件开发商的生产率,为加拿大公司节省大量资金。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bolic, Miodrag其他文献
A comparative study of PCA, SIMCA and Cole model for classification of bioimpedance spectroscopy measurements
- DOI:
10.1016/j.compbiomed.2015.05.004 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:7.7
- 作者:
Nejadgholi, Isar;Bolic, Miodrag - 通讯作者:
Bolic, Miodrag
Robust computationally efficient control of cooperative closed-chain manipulators with uncertain dynamics
- DOI:
10.1016/j.automatica.2006.10.025 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:6.4
- 作者:
Gueaieb, Wail;Al-Sharhan, Salah;Bolic, Miodrag - 通讯作者:
Bolic, Miodrag
Neural-based approach for localization of sensors in indoor environment
- DOI:
10.1007/s11235-009-9223-4 - 发表时间:
2010-06-01 - 期刊:
- 影响因子:2.5
- 作者:
Irfan, Nazish;Bolic, Miodrag;Narasimhan, Venkataraman - 通讯作者:
Narasimhan, Venkataraman
CapsFall: Fall Detection Using Ultra-Wideband Radar and Capsule Network
- DOI:
10.1109/access.2019.2907925 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Sadreazami, Hamidreza;Bolic, Miodrag;Rajan, Sreeraman - 通讯作者:
Rajan, Sreeraman
M-Ary RFID Tags Splitting With Small Idle Slots
- DOI:
10.1109/tase.2011.2159490 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:5.6
- 作者:
Guo, Hongbo;Leung, Victor C. M.;Bolic, Miodrag - 通讯作者:
Bolic, Miodrag
Bolic, Miodrag的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bolic, Miodrag', 18)}}的其他基金
Machine Learning with Uncertainty for Monitoring Moving Objects and People
用于监控移动物体和人员的不确定性机器学习
- 批准号:
RGPIN-2020-04417 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning with Uncertainty for Monitoring Moving Objects and People
用于监控移动物体和人员的不确定性机器学习
- 批准号:
RGPIN-2020-04417 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
An IoT-based contactless vital signs monitoring system
基于物联网的非接触式生命体征监测系统
- 批准号:
571256-2022 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Idea to Innovation
Machine Learning with Uncertainty for Monitoring Moving Objects and People
用于监控移动物体和人员的不确定性机器学习
- 批准号:
RGPIN-2020-04417 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Thermal imaging for efficient detection of vital signs during COVID-19 pandemic
热成像可在 COVID-19 大流行期间有效检测生命体征
- 批准号:
554845-2020 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
Automated Monitoring and Localization of People
人员的自动监控和定位
- 批准号:
RGPIN-2015-04270 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Automated Monitoring and Localization of People
人员的自动监控和定位
- 批准号:
RGPIN-2015-04270 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Automated Monitoring and Localization of People
人员的自动监控和定位
- 批准号:
RGPIN-2015-04270 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Multi-Microphone Signal Processing and Machine Learning
多麦克风信号处理和机器学习
- 批准号:
516327-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Automated Monitoring and Localization of People
人员的自动监控和定位
- 批准号:
RGPIN-2015-04270 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Exploring unsupervised domain adaptation methods for automated linear disturbance mapping
探索自动线性扰动映射的无监督域适应方法
- 批准号:
577643-2022 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
CDS&E: HAM3R: Heterogeneous Automated Management of Multiscale Methods and Resources
CDS
- 批准号:
2204011 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Development of automated path search methods for reactions including spin-inversion
开发包括自旋反转在内的反应自动路径搜索方法
- 批准号:
22K05031 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automated data collection and machine learning methods for civil infrastructure condition assessment in sparsely inhabited regions of Canada
用于加拿大人烟稀少地区民用基础设施状况评估的自动数据收集和机器学习方法
- 批准号:
RGPIN-2021-03916 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Deep learning methods for automated and accurate reconstruction of protein structures from cryo-EM image data
用于从冷冻电镜图像数据自动准确重建蛋白质结构的深度学习方法
- 批准号:
10459829 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Development of rapid and automated remote sensing methods for ground engagement equipment enabling selective mining
开发用于地面接触设备的快速自动化遥感方法,以实现选择性采矿
- 批准号:
561062-2020 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
Deep learning methods for automated and accurate reconstruction of protein structures from cryo-EM image data
用于从冷冻电镜图像数据自动准确重建蛋白质结构的深度学习方法
- 批准号:
10707036 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Development of methods for automated preprocedural CT assessment for TAVR by artificial intelligence
开发人工智能自动术前 CT 评估 TAVR 的方法
- 批准号:
21K20920 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of machine learning methods for automated design of new biological functions in bacterial proteins.
开发机器学习方法,用于自动设计细菌蛋白质的新生物功能。
- 批准号:
2600923 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Studentship














{{item.name}}会员




