Deep Learning Technologies for Acoustic Echo Cancellation in Dynamic Environments
用于动态环境中声学回声消除的深度学习技术
基本信息
- 批准号:543348-2019
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a full-duplex hands-free voice communication system, a speaker located in a room at one end of the link may receive an echo of his/her voice due to the acoustic coupling between the loudspeaker and the microphone at the other end of the link. The goal of acoustic echo cancellation (AEC) is to remove such undesirable echo in order to improve the quality and intelligibility of the voice communication, as well as the performance of related applications, such as automatic speech recognition (ASR). While numerous AEC algorithms based on traditional adaptive filtering techniques have been proposed in the past, recent studies on the application of deep neural networks (DNN) to this problem have shown remarkable performance, especially under adverse conditions, i.e., high levels of noise and reverberation, nonlinear characteristics of audio devices, etc. However, the limited ability of these DNN to generalize to the wide dynamics of the acoustic environment still remains an open issue for research and a specific problem of concern to our partner, Fluent.ai, whose focus is on developing the next generation of voice user interfaces (VUI). Within this framework, the main objective of this project is to develop new DNN-based AEC algorithms to overcome the above limitation for real-time applications. Our proposed work includes: (1) incorporating additional information provided by on-line estimation of the acoustic impulse response into the DNN-based AEC framework, and (2) determining the most suitable DNN architecture for implementing this approach. The new algorithms developed in this project will be used by Fluent.ai to establish and eventually commercialize a new line of embedded VUI for voice communications and ASR, thereby enabling the company to attract additional customers and grow its business. In addition to address the company's specific need, this short-term project will foster the development of a new research partnership between the academic researchers at McGill University and the scientific members at Fluent.ai, bringing significant long-term benefits to Canada.
在全双工免提语音通信系统中,位于链路一端的房间中的扬声器可能由于扬声器与链路另一端的麦克风之间的声学耦合而接收到他/她的语音的回声。声学回声消除(AEC)的目标是消除这种不期望的回声,以提高语音通信的质量和可懂度,以及相关应用(例如自动语音识别(ASR))的性能。虽然过去已经提出了许多基于传统自适应滤波技术的AEC算法,但最近关于深度神经网络(DNN)应用于该问题的研究已经显示出显着的性能,特别是在不利条件下,即,然而,这些DNN推广到声学环境的广泛动态的有限能力仍然是一个开放的研究问题,也是我们的合作伙伴Fluent.ai关注的具体问题,其重点是开发下一代语音用户界面(VUI)。在此框架内,该项目的主要目标是开发新的基于DNN的AEC算法,以克服实时应用的上述限制。我们建议的工作包括:(1)将由声学脉冲响应的在线估计提供的附加信息合并到基于DNN的AEC框架中,以及(2)确定用于实现该方法的最合适的DNN架构。该项目开发的新算法将被Fluent.ai用于建立并最终商业化用于语音通信和ASR的嵌入式VUI新产品线,从而使公司能够吸引更多客户并发展业务。除了满足公司的具体需求外,这个短期项目还将促进麦吉尔大学的学术研究人员与Fluent.ai的科学成员之间建立新的研究伙伴关系,为加拿大带来重大的长期利益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Champagne, Benoit其他文献
Multi-State Second-Order Nonlinear Optical Switches Incorporating One to Three Benzazolo-Oxazolidine Units: A Quantum Chemistry Investigation.
- DOI:
10.3390/molecules27092770 - 发表时间:
2022-04-26 - 期刊:
- 影响因子:4.6
- 作者:
Beaujean, Pierre;Sanguinet, Lionel;Rodriguez, Vincent;Castet, Frederic;Champagne, Benoit - 通讯作者:
Champagne, Benoit
Signature of multiradical character in second hyperpolarizabilities of rectangular graphene nanoflakes
- DOI:
10.1016/j.cplett.2010.03.013 - 发表时间:
2010-04-09 - 期刊:
- 影响因子:2.8
- 作者:
Nagai, Hiroshi;Nakano, Masayoshi;Champagne, Benoit - 通讯作者:
Champagne, Benoit
TDDFT investigation of the optical properties of cyanine dyes
- DOI:
10.1016/j.cplett.2006.05.009 - 发表时间:
2006-07-03 - 期刊:
- 影响因子:2.8
- 作者:
Champagne, Benoit;Guillaume, Maxime;Zutterman, Freddy - 通讯作者:
Zutterman, Freddy
Theoretical study on the spin state and open-shell character dependences of the second hyperpolarizability in hydrogen chain models
- DOI:
10.1103/physreva.94.042515 - 发表时间:
2016-10-28 - 期刊:
- 影响因子:2.9
- 作者:
Matsui, Hiroshi;Nakano, Masayoshi;Champagne, Benoit - 通讯作者:
Champagne, Benoit
X Polarizabilities and hyperpolarizabilities
- DOI:
10.1039/9781849730884-00043 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:0
- 作者:
Champagne, Benoit - 通讯作者:
Champagne, Benoit
Champagne, Benoit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Champagne, Benoit', 18)}}的其他基金
Array Signal Processing Techniques for Terahertz Communications and Sensing
用于太赫兹通信和传感的阵列信号处理技术
- 批准号:
RGPIN-2022-03678 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Signal Prosessing Techniques for 5G Wireless and mm-Wave Communications
5G 无线和毫米波通信的信号处理技术
- 批准号:
RGPIN-2017-04223 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Signal Prosessing Techniques for 5G Wireless and mm-Wave Communications
5G 无线和毫米波通信的信号处理技术
- 批准号:
DGDND-2017-00019 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Signal Prosessing Techniques for 5G Wireless and mm-Wave Communications
5G 无线和毫米波通信的信号处理技术
- 批准号:
RGPIN-2017-04223 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Signal Prosessing Techniques for 5G Wireless and mm-Wave Communications
5G 无线和毫米波通信的信号处理技术
- 批准号:
DGDND-2017-00019 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Signal Prosessing Techniques for 5G Wireless and mm-Wave Communications
5G 无线和毫米波通信的信号处理技术
- 批准号:
RGPIN-2017-04223 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Deep neural network-based speech enhancement for robust speech recognition in smart home device
基于深度神经网络的语音增强,可在智能家居设备中实现稳健的语音识别
- 批准号:
515072-2017 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Deep neural network-based speech enhancement for robust speech recognition in smart home device
基于深度神经网络的语音增强,可在智能家居设备中实现稳健的语音识别
- 批准号:
515072-2017 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Signal Prosessing Techniques for 5G Wireless and mm-Wave Communications
5G 无线和毫米波通信的信号处理技术
- 批准号:
DGDND-2017-00019 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Signal Prosessing Techniques for 5G Wireless and mm-Wave Communications
5G 无线和毫米波通信的信号处理技术
- 批准号:
RGPIN-2017-04223 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CyberTraining: Pilot: Cross-Layer Training of High-Performance Deep Learning Technologies and Applications for Research Workforce Development in Central Valley
网络培训:试点:高性能深度学习技术和应用程序的跨层培训,用于中央谷研究人员的发展
- 批准号:
2321123 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
CICI: UCSS: Enhancing the Usability of Vulnerability Assessment Results for Open-Source Software Technologies in Scientific Cyberinfrastructure: A Deep Learning Perspective
CICI:UCSS:增强科学网络基础设施中开源软件技术漏洞评估结果的可用性:深度学习视角
- 批准号:
2319325 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
SBIR Phase I: Advanced Deep Learning Technologies for Designing Humanized Antibody
SBIR 第一阶段:用于设计人源化抗体的先进深度学习技术
- 批准号:
2304624 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Deep learning technologies for estimating the optimal task performance of medical imaging systems
用于评估医学成像系统最佳任务性能的深度学习技术
- 批准号:
10635347 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Large scale buggy clone management in the cloud using deep learning technologies
使用深度学习技术在云端进行大规模错误克隆管理
- 批准号:
574930-2022 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
University Undergraduate Student Research Awards
Accurate deep learning off-target prediction in CRISPR-Cas9 gene editing and related technologies
深度学习精准预测CRISPR-Cas9基因编辑及相关技术
- 批准号:
569627-2022 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Postgraduate Scholarships - Doctoral
Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
- 批准号:
10668430 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
- 批准号:
10453927 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
New Technologies for Active Dietary Management Using Deep Learning
利用深度学习进行主动饮食管理的新技术
- 批准号:
22H00548 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Enhancing Assisted Reproductive Technologies with Deep Learning and Data Visualization
通过深度学习和数据可视化增强辅助生殖技术
- 批准号:
10376335 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别: