Development of a framework to quantify low-flow risks and uncertainty related to climate change in a Northern Quebec River for hydropower generation

开发一个框架来量化魁北克北部河流水力发电与气候变化相关的低流量风险和不确定性

基本信息

  • 批准号:
    538238-2019
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Climate change impacts have already been detected in many regions of the globe. For Northern Canada, the rate at which the climate is changing has exceeded other regions by a wide margin. These changes are beginning to modify the historically expected hydrological regimes. For hydropower companies operating in these conditions, it is critical to assess the impacts of climate change on the hydropower system's operation. For example, if low-flow conditions are more frequent, it is possible that the turbines will not be able to meet their production targets and might even be forced to shut down for extended periods. This research proposal aims to develop a framework allowing to assess the impacts of climate change on different low-flow thresholds for designing and operating hydropower generation stations. More specifically, the project will quantify the uncertainty related to limitations in the hydrometeorological datasets, to climate change and to specific low-flow indices. An ensemble of hydrological models, reanalysis product datasets and climate change scenarios will be combined to evaluate the contributions to the overall uncertainty on the various low-flow indices.It is expected that the project will aid in decision-making regarding the design and operation of current and future hydropower stations in Northern Canada, leading to greener energy sources for the local communities. It will also help stakeholders make better-informed decisions regarding the feasibility of implementing hydropower in isolated markets.
在全球许多地区已经发现了气候变化的影响。在加拿大北部,气候变化的速度远远超过其他地区。这些变化开始改变历史上预期的水文制度。对于在这些条件下运行的水电公司来说,评估气候变化对水电系统运行的影响至关重要。例如,如果低流量条件更频繁,则涡轮机可能无法满足其生产目标,甚至可能被迫关闭较长时间。本研究计划旨在建立一个框架,以评估气候变化对设计和运行水电站的不同低流量阈值的影响。更具体地说,该项目将量化与水文气象数据集的限制、气候变化和特定低流量指数有关的不确定性。将综合水文模型、再分析产品数据集和气候变化情景,评估各种低流量指数对总体不确定性的贡献。预计该项目将有助于加拿大北部当前和未来水电站的设计和运营决策,为当地社区带来更绿色的能源。它还将帮助利益相关者就在孤立市场实施水电的可行性做出更明智的决策。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arsenault, Richard其他文献

Parameter dimensionality reduction of a conceptual model for streamflow prediction in Canadian, snowmelt dominated ungauged basins
  • DOI:
    10.1016/j.advwatres.2015.08.014
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Arsenault, Richard;Poissant, Dominique;Brissette, Francois
  • 通讯作者:
    Brissette, Francois
Hydrological ensemble forecasting using a multi-model framework
  • DOI:
    10.1016/j.jhydrol.2021.126537
  • 发表时间:
    2021-06-15
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Dion, Patrice;Martel, Jean-Luc;Arsenault, Richard
  • 通讯作者:
    Arsenault, Richard
An Efficient Method to Correct Under-Dispersion in Ensemble Streamflow Prediction of Inflow Volumes for Reservoir Optimization
  • DOI:
    10.1007/s11269-016-1425-4
  • 发表时间:
    2016-09-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Arsenault, Richard;Latraverse, Marco;Duchesne, Thierry
  • 通讯作者:
    Duchesne, Thierry
A comprehensive, multisource database for hydrometeorological modeling of 14,425 North American watersheds
  • DOI:
    10.1038/s41597-020-00583-2
  • 发表时间:
    2020-07-20
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Arsenault, Richard;Brissette, Francois;Poulin, Annie
  • 通讯作者:
    Poulin, Annie
Improving Hydrological Model Simulations with Combined Multi-Input and Multimodel Averaging Frameworks
  • DOI:
    10.1061/(asce)he.1943-5584.0001489
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Arsenault, Richard;Essou, Gilles R. C.;Brissette, Francois P.
  • 通讯作者:
    Brissette, Francois P.

Arsenault, Richard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arsenault, Richard', 18)}}的其他基金

Pushing back the boundaries to automating the operational hydrological forecasts used in hydropower reservoir management.
突破水电水库管理中使用的业务水文预报自动化的界限。
  • 批准号:
    RGPIN-2018-04872
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Value chain optimization of hydroelectric power generation systems
水力发电系统价值链优化
  • 批准号:
    522126-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Development of an improved hourly ensemble streamflow forecasting system for flood forecasting on small watersheds
开发改进的每小时集合水流预报系统,用于小流域洪水预报
  • 批准号:
    560780-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Pushing back the boundaries to automating the operational hydrological forecasts used in hydropower reservoir management.
突破水电水库管理中使用的业务水文预报自动化的界限。
  • 批准号:
    RGPIN-2018-04872
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Pushing back the boundaries to automating the operational hydrological forecasts used in hydropower reservoir management.
突破水电水库管理中使用的业务水文预报自动化的界限。
  • 批准号:
    RGPIN-2018-04872
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Value chain optimization of hydroelectric power generation systems
水力发电系统价值链优化
  • 批准号:
    522126-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Value chain optimization of hydroelectric power generation systems
水力发电系统价值链优化
  • 批准号:
    522126-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Pushing back the boundaries to automating the operational hydrological forecasts used in hydropower reservoir management.
突破水电水库管理中使用的业务水文预报自动化的界限。
  • 批准号:
    RGPIN-2018-04872
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Value chain optimization of hydroelectric power generation systems
水力发电系统价值链优化
  • 批准号:
    522126-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Pushing back the boundaries to automating the operational hydrological forecasts used in hydropower reservoir management.
突破水电水库管理中使用的业务水文预报自动化的界限。
  • 批准号:
    DGECR-2018-00261
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Translating AI-based methods to quantify pathology in MS: Development, validation and implementation of a sustainable MRI analysis framework within a pan-Canadian network
转化基于人工智能的方法来量化多发性硬化症的病理学:在泛加拿大网络内开发、验证和实施可持续的 MRI 分析框架
  • 批准号:
    480232
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Operating Grants
Advanced machine learning algorithms that integrate multi-modal neuroimaging to quantify the heterogeneity in Alzheimer's Disease
先进的机器学习算法,集成多模式神经影像来量化阿尔茨海默病的异质性
  • 批准号:
    10323673
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
Advanced machine learning algorithms that integrate multi-modal neuroimaging to quantify the heterogeneity in Alzheimer's Disease
先进的机器学习算法,集成多模式神经影像来量化阿尔茨海默病的异质性
  • 批准号:
    10542370
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
A framework to quantify and incorporate uncertainty for ethical application of AI-based quantitative imaging in clinical decision making
量化和纳入基于人工智能的定量成像在临床决策中的伦理应用的不确定性的框架
  • 批准号:
    10599754
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
Collaborative Research: RoL: Deep-learning framework to quantify emergent phenotypes for functional gene annotation
合作研究:RoL:量化功能基因注释的新兴表型的深度学习框架
  • 批准号:
    1856665
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Research: RoL: Deep-learning framework to quantify emergent phenotypes for functional gene annotation
合作研究:RoL:量化功能基因注释的新兴表型的深度学习框架
  • 批准号:
    1856742
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Proposal: MSB-ECA: A multi-scale framework to quantify and forecast population changes and associated uncertainties
合作提案:MSB-ECA:量化和预测人口变化及相关不确定性的多尺度框架
  • 批准号:
    1702179
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Proposal: MSB-ECA: A multi-scale framework to quantify and forecast population changes and associated uncertainties
合作提案:MSB-ECA:量化和预测人口变化及相关不确定性的多尺度框架
  • 批准号:
    1702635
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Development of human EEG-ASL-BOLD neuroimaging and math modelling framework to quantify neuronal, haemodynamic and metabolic responses to stimulation
开发人类 EEG-ASL-BOLD 神经影像和数学建模框架,以量化神经元、血液动力学和代谢对刺激的反应
  • 批准号:
    EP/I022325/1
  • 财政年份:
    2011
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Fellowship
SBIR Phase I: Investigate and Quantify in Real Time (INQUIRE)- A Framework for Simulation Based on Real Data
SBIR 第一阶段:实时调查和量化 (INQUIRE) - 基于真实数据的模拟框架
  • 批准号:
    9960990
  • 财政年份:
    2000
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了