Novel algorithms for improving manufacturing analytics

用于改进制造分析的新颖算法

基本信息

  • 批准号:
    544092-2019
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Kinaxis is a company that provides software tools to enable its customers to create, visualize, monitor and execute their supply chain. A supply chain can be thought of as a flow chart representing how all the pieces within a production process fit together from raw materials to finished product. Consider the various components involved in the building of a house as a running example. Supply chains need to identify and encode an ordering between some components. For example, before one can put the roof on a house, the foundation must be laid. Supply chains can be also be used to identify components that can be accomplished concurrently. For example, one can paint the walls in several rooms at the same time. There is no unique supply chain for a given product. As such, one needs to create a supply chain that is realizable and that optimizes certain criteria such as efficiency. The specific problems that will be addressed in this project are directly concerned with these two criteria, i.e. realizability and efficiency. One major barrier to realizability within a supply chain is the existence of cycles. If a supply chain contains the following condition: A must complete before B; B must complete before C and C must complete before A. Such a situation is a directed cycle and would render the supply chain infeasible since none of the components A, B or C can be completed. Kinaxis' software can currently identify cycles, but the process is slow and does not identify all cycles. We will explore various options to speed up the identification of cycles and enumerate all cycles that exist within a supply chain. Efficiency can be achieved in many ways. For this project, the goal will be to increase efficiency of a supply chain by identifying all components that can be completed concurrently or at the same time. Currently, Kinaxis' software cannot identify such components. We will explore various techniques in order to automate the identification of families of components that can be completed concurrently.
Kinaxis是一家提供软件工具的公司,使其客户能够创建,可视化,监控和执行他们的供应链。供应链可以被认为是一个流程图,代表了生产过程中从原材料到成品的所有部分如何组合在一起。考虑在房屋建造中涉及的各种组件作为运行示例。供应链需要识别和编码某些组件之间的订单。例如,在盖屋顶之前,必须先打好地基。供应链也可以用来确定可以同时完成的组件。例如,一个人可以同时在几个房间里粉刷墙壁。对于一种特定的产品,没有唯一的供应链。因此,需要创建一个可实现的供应链,并优化某些标准,如效率。本项目将解决的具体问题与这两个标准直接相关,即可实现性和效率。在供应链中实现可实现性的一个主要障碍是周期的存在。如果供应链包含以下条件:A必须在B之前完成; B必须在C之前完成; C必须在A之前完成。这种情况是一种定向循环,由于A、B或C组件都无法完成,因此会使供应链变得不可行。Kinaxis的软件目前可以识别周期,但这个过程很慢,不能识别所有周期。我们将探索各种选项,以加快周期的识别,并枚举供应链中存在的所有周期。效率可以通过多种方式实现。本项目的目标是通过确定可以同时或同时完成的所有组件来提高供应链的效率。目前,Kinaxis的软件无法识别此类组件。我们将探索各种技术,以自动识别可以同时完成的组件系列。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bose, Prosenjit其他文献

PROXIMITY GRAPHS: E, δ, Δ, χ AND ω
Switching to Directional Antennas with Constant Increase in Radius and Hop Distance
  • DOI:
    10.1007/s00453-012-9739-y
  • 发表时间:
    2014-06-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Bose, Prosenjit;Carmi, Paz;Maheshwari, Anil
  • 通讯作者:
    Maheshwari, Anil
On plane geometric spanners: A survey and open problems
Space-efficient geometric divide-and-conquer algorithms
Area-preserving approximations of polygonal paths
  • DOI:
    10.1016/j.jda.2005.06.008
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bose, Prosenjit;Cabello, Sergio;Speckmann, Bettina
  • 通讯作者:
    Speckmann, Bettina

Bose, Prosenjit的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bose, Prosenjit', 18)}}的其他基金

Geometric Computing
几何计算
  • 批准号:
    RGPIN-2019-06646
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Computing
几何计算
  • 批准号:
    RGPIN-2019-06646
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Computing
几何计算
  • 批准号:
    RGPIN-2019-06646
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Computing
几何计算
  • 批准号:
    RGPIN-2019-06646
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Computing
几何计算
  • 批准号:
    RGPIN-2014-06399
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Computing
几何计算
  • 批准号:
    RGPIN-2014-06399
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Computing
几何计算
  • 批准号:
    RGPIN-2014-06399
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Computing
几何计算
  • 批准号:
    RGPIN-2014-06399
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Computing
几何计算
  • 批准号:
    RGPIN-2014-06399
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric computing
几何计算
  • 批准号:
    204772-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Reducing the Risk and Economic burden of Recurrent stroke by improving medication adherence using a Novel SMART Pill CONTAINER, Cap, and Health Literacy Technologies
使用新型智能药丸容器、瓶盖和健康素养技术提高用药依从性,降低复发性中风的风险和经济负担
  • 批准号:
    10601743
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Novel machine learning and missing data methods for improving estimates of physical activity, sedentary behavior and sleep using accelerometer data
新颖的机器学习和缺失数据方法,可使用加速度计数据改进对身体活动、久坐行为和睡眠的估计
  • 批准号:
    10400835
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
Novel machine learning and missing data methods for improving estimates of physical activity, sedentary behavior and sleep using accelerometer data
新颖的机器学习和缺失数据方法,可使用加速度计数据改进对身体活动、久坐行为和睡眠的估计
  • 批准号:
    10548871
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
Novel machine learning approaches for improving structural discrimination in cryo-electron tomography
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法
  • 批准号:
    10454131
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
Novel machine learning approaches for improving structural discrimination in cryo-electron tomography
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法
  • 批准号:
    9973462
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
Improving metagenomic analysis with novel algorithms and technologies
利用新颖的算法和技术改进宏基因组分析
  • 批准号:
    10029180
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
Novel machine learning approaches for improving structural discrimination in cryo-electron tomography
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法
  • 批准号:
    10187596
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
Improving metagenomic analysis with novel algorithms and technologies
利用新颖的算法和技术改进宏基因组分析
  • 批准号:
    10698006
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
Improving metagenomic analysis with novel algorithms and technologies
利用新颖的算法和技术改进宏基因组分析
  • 批准号:
    10250501
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
Novel machine learning approaches for improving structural discrimination in cryo-electron tomography-Administrative Supplement
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法-行政补充
  • 批准号:
    10388867
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了