Data driven techniques and evidence-based policy in waste management system

废物管理系统中的数据驱动技术和循证政策

基本信息

  • 批准号:
    RGPIN-2019-06154
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Canadians generate about 2.7kg/cap of non-hazardous municipal solid waste per day, the highest among many industrial nations. In addition, we have one of the lowest waste diversion rates in the world and send most of our waste to landfills for permanent disposal. Attitudes and behaviors related to Canadian waste management practices are complex and will take time to change. Reliance on landfill technology alone as the primary waste treatment method is not sustainable. There is a world-wide trend on the use of data-driven techniques in waste management system (WMS), and I believe these techniques and evidence-based policy to WMS is the key to the next generation of waste management. It is, however, difficult to implement effective waste policy if the WMS characteristics are not well understood.******This proposal focuses on two themes, including identification of the attributes of a sustainable WMS for regions with diverse geographical and climatic features, and improvement of the current state of the art modelling techniques for the development of a regionalized WMS framework in Canada. The specific objectives are to: (1a) develop an original set of metrics for WMS evaluation, (1b) identify new design principles on effective landfill design using text and content analysis, (2a) create a waste collection GIS model with real-time applications, and (2b) develop a novel artificial neural network generation modelling approach for electronic waste. The ability to incorporate our analytical approaches and tools into the waste regulations will be a huge benefit to Canada, particularly in regions with subpar diversion rates. Canada has been traditionally a strong global leader in environmental engineering, as continued investment enables Canada to build a knowledge base for waste policy and to remain an active contributor of new modeling techniques in WMS. ******Fulfillment of objectives 1 a&b will provide us a theoretical understanding of a sustainable WMS and shed new light on the bigger question of whether an upper limit on diversion rate exist in a region. Improvements on the state of the art of numerical techniques described in objectives 2 a&b are important due to the complexity of the WMS, and that waste management is expensive. According to Statistics Canada, in 2014 we spent over $3.3 billion dollars on solid waste management. Advanced numerical techniques and tools will help us to optimize existing system and to propose alternative solution using a fraction of time and money compared to field study. The realizations of these objectives described herein will fundamentally change how we implement WMS in Canada and beyond, and will ultimately bring us closer to the answer of this long-standing question whether an upper limit on waste diversion rate exists.**
加拿大人每天产生约2.7公斤/帽的无害城市固体废物,是许多工业国家中最高的。此外,香港是世界上废物转移率最低的地区之一,把大部分废物运往堆填区作永久弃置。与加拿大废物管理做法相关的态度和行为是复杂的,需要时间来改变。仅依靠垃圾填埋技术作为主要的废物处理方法是不可持续的。在废物管理系统(WMS)中使用数据驱动技术是一种世界性的趋势,我相信这些技术和基于证据的WMS政策是下一代废物管理的关键。然而,如果不能很好地了解水资源管理系统的特点,就很难实施有效的废物政策。*本建议侧重于两个主题,包括为地理和气候特征不同的区域确定可持续的水资源管理系统的属性,以及改进目前最先进的建模技术,以便在加拿大建立一个区域化的水资源管理系统框架。具体目标是:(1a)制定一套用于废物管理系统评估的原始指标,(1b)利用文本和内容分析确定有效垃圾填埋场设计的新设计原则,(2a)创建具有实时应用的废物收集地理信息系统模型,以及(2b)开发一种新的电子废物人工神经网络生成建模方法。能够将我们的分析方法和工具纳入废物法规,对加拿大将是一个巨大的好处,特别是在转移率低于平均水平的地区。加拿大传统上一直是环境工程领域的全球领先者,因为持续的投资使加拿大能够为废物政策建立知识库,并继续积极推动WMS中的新建模技术。*目标1a和b的实现将使我们从理论上理解可持续的水资源管理系统,并对一个更大的问题--一个区域是否存在分水率上限--提供新的认识。由于水资源管理系统的复杂性以及废物管理费用昂贵,改进目标2a和b中所述的数值技术的技术水平是重要的。根据加拿大统计局的数据,2014年,我们在固体废物管理上花费了超过33亿美元。先进的数值技术和工具将帮助我们优化现有的系统,并提出替代解决方案,与实地研究相比,只需很少的时间和金钱。这里描述的这些目标的实现将从根本上改变我们在加拿大和其他地方实施WMS的方式,并最终使我们更接近这个长期存在的问题的答案是否存在废物转移率上限。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ng, KelvinTsunWai其他文献

Ng, KelvinTsunWai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ng, KelvinTsunWai', 18)}}的其他基金

Data driven techniques and evidence-based policy in waste management system
废物管理系统中的数据驱动技术和循证政策
  • 批准号:
    RGPIN-2019-06154
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Data driven techniques and evidence-based policy in waste management system
废物管理系统中的数据驱动技术和循证政策
  • 批准号:
    RGPIN-2019-06154
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Computational modeling and simulation of municipal waste generation and risk assessment during COVID-19
COVID-19 期间城市废物产生和风险评估的计算建模和模拟
  • 批准号:
    551383-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Alliance Grants
Data driven techniques and evidence-based policy in waste management system
废物管理系统中的数据驱动技术和循证政策
  • 批准号:
    RGPIN-2019-06154
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
The use of a waste-derived daily cover to enhance geo-environmental performance of sanitary landfills
使用废物产生的日常覆盖物来提高卫生填埋场的地质环境绩效
  • 批准号:
    385815-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
The use of a waste-derived daily cover to enhance geo-environmental performance of sanitary landfills
使用废物产生的日常覆盖物来提高卫生填埋场的地质环境绩效
  • 批准号:
    385815-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
The use of a waste-derived daily cover to enhance geo-environmental performance of sanitary landfills
使用废物产生的日常覆盖物来提高卫生填埋场的地质环境绩效
  • 批准号:
    385815-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
The use of a waste-derived daily cover to enhance geo-environmental performance of sanitary landfills
使用废物产生的日常覆盖物来提高卫生填埋场的地质环境绩效
  • 批准号:
    385815-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
The use of a waste-derived daily cover to enhance geo-environmental performance of sanitary landfills
使用废物产生的日常覆盖物来提高卫生填埋场的地质环境绩效
  • 批准号:
    385815-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
The use of a waste-derived daily cover to enhance geo-environmental performance of sanitary landfills
使用废物产生的日常覆盖物来提高卫生填埋场的地质环境绩效
  • 批准号:
    385815-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
  • 批准号:
    10727356
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
  • 批准号:
    2238415
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
  • 批准号:
    10619319
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair
整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症
  • 批准号:
    10751099
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
  • 批准号:
    10732934
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Optimizing Resource Allocation through Data-Driven Patient Segmentation: A Machine Learning Approach to Enhance Outpatient and Home Transfusion Services
通过数据驱动的患者细分优化资源分配:增强门诊和家庭输血服务的机器学习方法
  • 批准号:
    493337
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
OAC Core: Data-driven Methods and Techniques For Protecting Research and Critical Cyberinfrastructure By Characterizing and Defending Against Ransomware
OAC 核心:通过表征和防御勒索软件来保护研究和关键网络基础设施的数据驱动方法和技术
  • 批准号:
    2348719
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
  • 批准号:
    10714540
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Data-Driven Exploration of Exposomic Influences on the Onset of Alcohol Use During Adolescence
数据驱动的暴露体对青春期饮酒影响的探索
  • 批准号:
    10826809
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了