Data driven techniques and evidence-based policy in waste management system
废物管理系统中的数据驱动技术和循证政策
基本信息
- 批准号:RGPIN-2019-06154
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Canadians generate about 2.7kg/cap of non-hazardous municipal solid waste per day, the highest among many industrial nations. In addition, we have one of the lowest waste diversion rates in the world and send most of our waste to landfills for permanent disposal. Attitudes and behaviors related to Canadian waste management practices are complex and will take time to change. Reliance on landfill technology alone as the primary waste treatment method is not sustainable. There is a world-wide trend on the use of data-driven techniques in waste management system (WMS), and I believe these techniques and evidence-based policy to WMS is the key to the next generation of waste management. It is, however, difficult to implement effective waste policy if the WMS characteristics are not well understood.
This proposal focuses on two themes, including identification of the attributes of a sustainable WMS for regions with diverse geographical and climatic features, and improvement of the current state of the art modelling techniques for the development of a regionalized WMS framework in Canada. The specific objectives are to: (1a) develop an original set of metrics for WMS evaluation, (1b) identify new design principles on effective landfill design using text and content analysis, (2a) create a waste collection GIS model with real-time applications, and (2b) develop a novel artificial neural network generation modelling approach for electronic waste. The ability to incorporate our analytical approaches and tools into the waste regulations will be a huge benefit to Canada, particularly in regions with subpar diversion rates. Canada has been traditionally a strong global leader in environmental engineering, as continued investment enables Canada to build a knowledge base for waste policy and to remain an active contributor of new modeling techniques in WMS.
Fulfillment of objectives 1 a&b will provide us a theoretical understanding of a sustainable WMS and shed new light on the bigger question of whether an upper limit on diversion rate exist in a region. Improvements on the state of the art of numerical techniques described in objectives 2 a&b are important due to the complexity of the WMS, and that waste management is expensive. According to Statistics Canada, in 2014 we spent over $3.3 billion dollars on solid waste management. Advanced numerical techniques and tools will help us to optimize existing system and to propose alternative solution using a fraction of time and money compared to field study. The realizations of these objectives described herein will fundamentally change how we implement WMS in Canada and beyond, and will ultimately bring us closer to the answer of this long-standing question whether an upper limit on waste diversion rate exists.
加拿大每天产生约2.7公斤/上限的非危险城市固体废物,是许多工业国家中最高的。此外,我们是世界上废物转移率最低的国家之一,我们的大部分废物都被送往堆填区永久处置。与加拿大废物管理做法有关的态度和行为是复杂的,需要时间来改变。仅仅依靠填埋技术作为主要的废物处理方法是不可持续的。在废物管理系统(WMS)中使用数据驱动技术是一个全球性的趋势,我相信这些技术和基于证据的WMS政策是下一代废物管理的关键。然而,如果不很好地理解WMS的特点,就很难实施有效的废物政策。
该提案侧重于两个主题,包括为具有不同地理和气候特征的地区确定可持续的WMS的属性,以及改进目前最先进的建模技术,以在加拿大开发区域化的WMS框架。具体目标是:(1a)开发一套原始的WMS评估指标,(1b)利用文本和内容分析确定有效填埋场设计的新设计原则,(2a)创建一个具有实时应用程序的废物收集GIS模型,(2b)开发一种新的电子废物人工神经网络生成建模方法。将我们的分析方法和工具纳入废物法规的能力将使加拿大受益匪浅,特别是在转移率低于标准的地区。加拿大一直是环境工程领域的全球领导者,因为持续的投资使加拿大能够建立废物政策的知识基础,并继续为WMS中的新建模技术做出积极贡献。
目标1 a&B的实现将为我们提供一个可持续的水管理系统的理论理解,并揭示了更大的问题,即在一个地区是否存在一个上限的分流率。由于仓库管理系统的复杂性,以及废物管理的昂贵性,目标2a和B中描述的数值技术的最新技术水平的改进是重要的。根据加拿大统计局的数据,2014年,我们在固体废物管理上花费了超过33亿加元。先进的数值技术和工具将帮助我们优化现有的系统,并提出替代解决方案,使用一小部分的时间和金钱相比,现场研究。本文所述这些目标的实现将从根本上改变我们在加拿大及其他地区实施WMS的方式,并最终使我们更接近这个长期存在的问题的答案,即废物转移率是否存在上限。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ng, KelvinTsunWai其他文献
Ng, KelvinTsunWai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ng, KelvinTsunWai', 18)}}的其他基金
Data driven techniques and evidence-based policy in waste management system
废物管理系统中的数据驱动技术和循证政策
- 批准号:
RGPIN-2019-06154 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Data driven techniques and evidence-based policy in waste management system
废物管理系统中的数据驱动技术和循证政策
- 批准号:
RGPIN-2019-06154 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Computational modeling and simulation of municipal waste generation and risk assessment during COVID-19
COVID-19 期间城市废物产生和风险评估的计算建模和模拟
- 批准号:
551383-2020 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Alliance Grants
Data driven techniques and evidence-based policy in waste management system
废物管理系统中的数据驱动技术和循证政策
- 批准号:
RGPIN-2019-06154 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
The use of a waste-derived daily cover to enhance geo-environmental performance of sanitary landfills
使用废物产生的日常覆盖物来提高卫生填埋场的地质环境绩效
- 批准号:
385815-2012 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
The use of a waste-derived daily cover to enhance geo-environmental performance of sanitary landfills
使用废物产生的日常覆盖物来提高卫生填埋场的地质环境绩效
- 批准号:
385815-2012 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
The use of a waste-derived daily cover to enhance geo-environmental performance of sanitary landfills
使用废物产生的日常覆盖物来提高卫生填埋场的地质环境绩效
- 批准号:
385815-2012 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
The use of a waste-derived daily cover to enhance geo-environmental performance of sanitary landfills
使用废物产生的日常覆盖物来提高卫生填埋场的地质环境绩效
- 批准号:
385815-2012 - 财政年份:2014
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
The use of a waste-derived daily cover to enhance geo-environmental performance of sanitary landfills
使用废物产生的日常覆盖物来提高卫生填埋场的地质环境绩效
- 批准号:
385815-2012 - 财政年份:2013
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
The use of a waste-derived daily cover to enhance geo-environmental performance of sanitary landfills
使用废物产生的日常覆盖物来提高卫生填埋场的地质环境绩效
- 批准号:
385815-2012 - 财政年份:2012
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
- 批准号:
2238415 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair
整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症
- 批准号:
10751099 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
- 批准号:
10619319 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Optimizing Resource Allocation through Data-Driven Patient Segmentation: A Machine Learning Approach to Enhance Outpatient and Home Transfusion Services
通过数据驱动的患者细分优化资源分配:增强门诊和家庭输血服务的机器学习方法
- 批准号:
493337 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
OAC Core: Data-driven Methods and Techniques For Protecting Research and Critical Cyberinfrastructure By Characterizing and Defending Against Ransomware
OAC 核心:通过表征和防御勒索软件来保护研究和关键网络基础设施的数据驱动方法和技术
- 批准号:
2348719 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Data-Driven Exploration of Exposomic Influences on the Onset of Alcohol Use During Adolescence
数据驱动的暴露体对青春期饮酒影响的探索
- 批准号:
10826809 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别: