Health care operational research under uncertainty and data variability
不确定性和数据可变性下的医疗保健运筹学
基本信息
- 批准号:RGPIN-2019-04301
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The complexity and challenges associated with healthcare delivery has proved a fruitful area to practice operational research (OR) and industrial engineering for several decades. Research projects and outputs have advanced the science of these disciplines and improved healthcare operations. The importance of this partnership is poised to grow as healthcare providers invest more in data analytics (infrastructure and professional human resources) and continue to look to universities to help with their most complex challenges. With the explosion of data, many previously uncertain problem characteristics can now be quantified. How to take full advantage of this and how to make good decisions in the face of the high variability often found in this new data is the focus of this program of research. Specifically, the research objectives of this program of research are:****** To enhance our ability to extract information related to operational processes and patient populations from new, abundant, and disparate healthcare data sources*** To use this data and information for advancing healthcare analytics*** To use this data and information for less uncertain and improved OR models*** To compare and contrast solutions obtained from Analytics with OR models ******Once the underlying processes are understood, OR methods can be developed to make better decisions. Queueing theory and queueing network models will be used for strategic capacity planning and are well equipped to determine which investment (e.g. more resources, faster service times, rerouting of patients, etc.) will result in the most improvement. Simulation and simulation optimization will be used when there are large amounts of data and we are not limited to data described only by theoretical probability distributions (a common problem in many queueing network models). Markov models are also well suited for optimizing in uncertain settings and will be used when the underlying system dynamics are well modelled with Poisson processes. ******Analytics models are able to describe, predict and prescribe based on empirical data and without a need for a comprehensive understanding of the underlying structure. Stochastic OR models can likewise describe, predict and prescribe actions but to do so requires a more complete understanding of the underlying systems (and typically less data). As such, the objectives are similar, but the approach and the information needed is different. In studying the differences, similarities, challenges, and outputs of each, I aim to characterize problem types where each is most appropriate and to derive a unifying framework connecting OR methods and Analytics methods such that how they complement each other can be understood and used to advance both fields. Capitalizing on new data and the joint benefits of OR and Analytics methods will lead to improved healthcare delivery for Canadians.**
几十年来,与医疗服务相关的复杂性和挑战已被证明是实践运筹学(OR)和工业工程的一个富有成效的领域。研究项目和成果推动了这些学科的科学发展,并改善了医疗保健业务。 随着医疗保健提供商在数据分析(基础设施和专业人力资源)方面投入更多资金,并继续寻求大学帮助解决最复杂的挑战,这种合作关系的重要性将不断增长。 随着数据的爆炸式增长,许多以前不确定的问题特征现在可以量化。 如何充分利用这一点,以及如何在面对这些新数据中经常发现的高变异性时做出良好的决策,是该研究计划的重点。具体而言,本研究计划的研究目标是:** 提高我们从新的、丰富的和不同的医疗保健数据源中提取与操作流程和患者人群相关的信息的能力 * 使用这些数据和信息推进医疗保健分析 * 使用这些数据和信息进行不确定性较小的改进OR模型 * 将从分析获得的解决方案与OR模型进行比较和对比 ** 一旦了解了基本流程,就可以开发OR方法来做出更好的决策。决策理论和决策网络模型将被用于战略能力规划,并被很好地装备,以确定哪些投资(例如,更多的资源,更快的服务时间,病人的改道等)。将带来最大的改善。当存在大量数据时,将使用模拟和模拟优化,并且我们不限于仅由理论概率分布描述的数据(许多嵌入式网络模型中的常见问题)。 马尔可夫模型也非常适合于在不确定的设置中进行优化,并且当基本系统动态被泊松过程很好地建模时,将使用马尔可夫模型。** 分析模型能够根据经验数据进行描述、预测和规定,而无需全面了解底层结构。 随机OR模型同样可以描述,预测和规定行动,但要做到这一点,需要对底层系统有更全面的理解(通常需要更少的数据)。 因此,目标是相似的,但方法和所需的信息是不同的。 在研究每种方法的差异,相似性,挑战和输出时,我的目标是描述每种方法最适合的问题类型,并导出一个连接OR方法和分析方法的统一框架,以便它们如何相互补充,可以理解并用于推进这两个领域。利用新数据以及OR和分析方法的共同优势将改善加拿大人的医疗保健服务。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vanberkel, Peter其他文献
Predicting ambulance offload delay using a hybrid decision tree model
- DOI:
10.1016/j.seps.2021.101146 - 发表时间:
2022-03-09 - 期刊:
- 影响因子:6.1
- 作者:
Li, Mengyu;Vanberkel, Peter;Zhong, Xiang - 通讯作者:
Zhong, Xiang
Assessment of COVID-19 barrier effectiveness using process safety techniques.
- DOI:
10.1016/j.psep.2022.10.009 - 发表时间:
2022-12 - 期刊:
- 影响因子:7.8
- 作者:
Turner, Lauren;Brown, Kayleigh Rayner;Vanberkel, Peter;Khan, Faisal;Comeau, Jeannette;Palmer, Jane;Koko, Ibimina;Amyotte, Paul - 通讯作者:
Amyotte, Paul
Vanberkel, Peter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vanberkel, Peter', 18)}}的其他基金
Exploiting new and abundant healthcare data to develop novel operational research methodologies
利用新的、丰富的医疗数据来开发新颖的运筹学方法
- 批准号:
RGPIN-2020-05825 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Exploiting new and abundant healthcare data to develop novel operational research methodologies
利用新的、丰富的医疗数据来开发新颖的运筹学方法
- 批准号:
RGPIN-2020-05825 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Advanced Sterile Processing for COVID-19 Personal Protective Equipment
适用于 COVID-19 个人防护装备的先进无菌处理
- 批准号:
549880-2020 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Alliance Grants
Capacity Planning for Elective Surgical Services post COVID-19
COVID-19 后择期手术服务的能力规划
- 批准号:
552137-2020 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Alliance Grants
Exploiting new and abundant healthcare data to develop novel operational research methodologies
利用新的、丰富的医疗数据来开发新颖的运筹学方法
- 批准号:
RGPIN-2020-05825 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Establishing generic problem structures and repeatable solution approaches for healthcare delivery problems
为医疗保健提供问题建立通用问题结构和可重复的解决方案
- 批准号:
434375-2013 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Establishing generic problem structures and repeatable solution approaches for healthcare delivery problems
为医疗保健提供问题建立通用问题结构和可重复的解决方案
- 批准号:
434375-2013 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Establishing generic problem structures and repeatable solution approaches for healthcare delivery problems
为医疗保健提供问题建立通用问题结构和可重复的解决方案
- 批准号:
434375-2013 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Designing proactive mitigation strategies to minimize the effect of offload delay on the performance of the ambulance service
设计主动缓解策略,尽量减少卸载延迟对救护车服务性能的影响
- 批准号:
500392-2016 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Engage Grants Program
Establishing generic problem structures and repeatable solution approaches for healthcare delivery problems
为医疗保健提供问题建立通用问题结构和可重复的解决方案
- 批准号:
434375-2013 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
CarE06介导朱砂叶螨对甲氰菊酯对映体代谢抗性形成差异机制
- 批准号:CSTB2023NSCQ-MSX0916
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
棉铃虫羧酸酯酶CarE001G在杀虫剂代谢和抗性中的作用及机制
- 批准号:U1903111
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:联合基金项目
棉铃虫羧酸酯酶CarE001C定向进化及突变酶的结构与功能研究
- 批准号:31201517
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
完善城镇居民基本医疗保险的"基本医疗服务包"研究
- 批准号:70873131
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Influence of the Microbiome on the Natural History of Alopecia Areata
微生物组对斑秃自然史的影响
- 批准号:
10585677 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Vivarium Modernization with Digital Ventilated Cages to Enhance Research Capacity and Reproducibility, and Provide Cage Environment Monitoring for Improved Operational Efficiency and Animal Welfare
采用数字通风笼进行现代化改造,以提高研究能力和再现性,并提供笼环境监测,以提高运营效率和动物福利
- 批准号:
10533591 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Study of Pathway-Dependent Effects of Luminal Microbial Metabolites Including Short Chain Fatty Acids and Bile Acids in Irritable Bowel Syndrome Through Meta-omics Analysis of Fecal Specimens
通过粪便样本的元组学分析研究肠道微生物代谢物(包括短链脂肪酸和胆汁酸)对肠易激综合征的途径依赖性影响
- 批准号:
10599335 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Study of Pathway-Dependent Effects of Luminal Microbial Metabolites Including Short Chain Fatty Acids and Bile Acids in Irritable Bowel Syndrome Through Meta-omics Analysis of Fecal Specimens
通过粪便样本的元组学分析研究肠道微生物代谢物(包括短链脂肪酸和胆汁酸)对肠易激综合征的途径依赖性影响
- 批准号:
10430450 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Systematic implementation and impact evaluation of data-driven cardiac surgery triaging tools to optimize operational efficiency and enhance patient outcomes during the COVID-19 pandemic and beyond
数据驱动的心脏手术分诊工具的系统实施和影响评估,以优化运营效率并提高 COVID-19 大流行期间及之后的患者治疗效果
- 批准号:
460227 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Operating Grants
Applying advanced data science for health and social care operational decision-support to reduces delays in care.
将先进的数据科学应用于健康和社会护理运营决策支持,以减少护理延误。
- 批准号:
ES/W005875/1 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Fellowship
Assessing the clinical, operational and system wide impact of Long Term Care eConnect
评估长期护理 eConnect 对临床、运营和系统范围的影响
- 批准号:
368870 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Fellowship Programs
Improving clinical, operational and economic outcomes related to MRSA
改善与 MRSA 相关的临床、运营和经济成果
- 批准号:
8677256 - 财政年份:2014
- 资助金额:
$ 1.89万 - 项目类别:
Emerging research and clinical priorities in the detection and management of frailty in older patients across acute care settings.
在急性护理环境中检测和管理老年患者虚弱的新兴研究和临床重点。
- 批准号:
284141 - 财政年份:2013
- 资助金额:
$ 1.89万 - 项目类别:
Miscellaneous Programs