Spatially confined electronic materials for resistive switching devices

用于电阻开关器件的空间受限电子材料

基本信息

  • 批准号:
    RGPIN-2019-06028
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

My previous and current research has been focused on synthesis of thin films and micro-bridges of magnetic oxides (manganites) and studies of their electronic/material properties. These studies led to discovery of unusual material properties (such as, anisotropic magnetoresistance AMR) in these materials. Large AMR can be used in magnetic switching devices. I want AMR to reach colossal size in micro-bridges. My plans to increase the size of AMR include modification of nano-bridges of manganite films using an electron beam, as well as subjecting these bridges to stress (in piezoelectric devices). These procedures could change properties (electronic phase separation) in bridges of these materials.******I am planning to use my experience with manganite materials and techniques to investigate the mechanisms responsible for unusual transport properties (resistive switching (RS)) in dielectric oxide films. Typically, the change in resistance in the dielectrics is "non-volatile" i.e., the resulting resistance can be maintained for a long time after the removal of the applied electric field. It was suggested that electric field-induced RS could be used for the next-generation random-access memory devices. I am planning first to investigate prototypical multilayer dielectric systems. There are many “parallels” between these oxides and manganites. Migration of defects and its formation are very sensitive to the shear stress in both materials. Also, the electrical transport in the dielectric oxides appears to be caused by the filamentary percolation conductivity, which is like that observed in manganites. I want to understand formation of these filaments as well as their influence on RS in dielectric oxides.******I want to understand filaments in these dielectrics, the activation energy of its formation, and its structural nature. I want to answer important question; Are these filaments formed by extended defects or electro-migration of oxygen defects? My research plan is to investigate changes in the electric/structural material properties of the different types of dielectric oxide multilayer systems using piezoelectric (PMNT-based stress producing) devices, and ionic-liquid based devices capable of producing large electric field. Using this techniques, I want to separate effects due to the extended defects from those due to the electro-migration of oxygen defects in the formation of filamentary RS. The number of extended defects depends strongly on the shear stress. On the other hand, the electro-migration of defects depends strongly on the electric field. Therefore, the applied stress and electric field could help me to “tune” the dielectric system devices to conditions capable of producing large RS. ******The goal of this research could allow me to produce new type of devices for RS switching purposes, as well as to understand in more detail the mechanism of RS.********
我以前的研究和当前的研究集中在磁氧化物(锰矿)及其电子/材料特性的薄膜和微桥的合成上。这些研究导致在这些材料中发现了异常的材料特性(例如,各向异性磁倍率AMR)。大型AMR可用于磁开关设备。我希望AMR在微桥中达到巨大的大小。我的计划增加了AMR的大小,包括使用电子束对锰矿膜的纳米桥进行修饰,以及使这些桥梁承受压力(在压电设备中)。这些程序可能会改变这些材料桥梁中的特性(电子相分离)。通常,饮食中的电阻变化是“非易失性”的,即在去除施加的电场后可以长时间保持所得的抗性。有人建议将电场诱导的RS用于下一代随机访问存储器。我计划首先研究典型的多层饮食系统。这些氧化物和锰矿之间有许多“相似之处”。缺陷的迁移及其形成对两种材料的剪切应力都非常敏感。同样,饮食氧化物中的电运似乎是由丝状成员电导率引起的,就像在锰矿中观察到的那样。我想了解这些细丝的形成及其对饮食氧化物中RS的影响。我想回答重要的问题;这些细丝是由氧缺陷的扩展缺陷或电迁移而形成的?我的研究计划是研究使用压电(基于PMNT的压力生产)设备以及能够生产大型电场的离子 - 液体的设备,研究不同类型氧化物多层系统的电/结构材料特性的变化。使用这种技术,由于氧气缺陷的电迁移在丝状RS形成中,我想分离效果与氧缺陷的延长缺陷。扩展缺陷的数量在很大程度上取决于剪切应力。另一方面,缺陷的电移很大程度上取决于电场。因此,施加的应力和电场可以帮助我将饮食系统设备“调整”到能够生产大RS的条件下。 *****这项研究的目标可以使我能够生产出用于RS切换目的的新型设备,并更详细地了解RS的机制。**************************************

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jung, Jan其他文献

Jung, Jan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jung, Jan', 18)}}的其他基金

Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
  • 批准号:
    RGPIN-2019-06028
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
  • 批准号:
    RGPIN-2019-06028
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
  • 批准号:
    RGPIN-2019-06028
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Materials and multilayers/nanowires for spintronics/superconducting applications
用于自旋电子学/超导应用的材料和多层/纳米线
  • 批准号:
    36319-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Materials and multilayers/nanowires for spintronics/superconducting applications
用于自旋电子学/超导应用的材料和多层/纳米线
  • 批准号:
    36319-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Materials and multilayers/nanowires for spintronics/superconducting applications
用于自旋电子学/超导应用的材料和多层/纳米线
  • 批准号:
    36319-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Materials and multilayers/nanowires for spintronics/superconducting applications
用于自旋电子学/超导应用的材料和多层/纳米线
  • 批准号:
    36319-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Materials and multilayers/nanowires for spintronics/superconducting applications
用于自旋电子学/超导应用的材料和多层/纳米线
  • 批准号:
    36319-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Magneto-transport in cuprates, diborides, and manganites
铜酸盐、二硼化物和锰酸盐中的磁输运
  • 批准号:
    36319-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Magneto-transport in cuprates, diborides, and manganites
铜酸盐、二硼化物和锰酸盐中的磁输运
  • 批准号:
    36319-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
  • 批准号:
    RGPIN-2019-06028
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
  • 批准号:
    RGPIN-2019-06028
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
  • 批准号:
    RGPIN-2019-06028
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
DMREF: Paired Ionic-Electronic Conductors in Spatially Confined Self-Assembling Rod-Coil Block Copolymers and Bolaamphiphiles
DMREF:空间受限自组装棒-线圈嵌段共聚物和 Bola 两亲物中的成对离子电子导体
  • 批准号:
    1629369
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Electronic Properties of Spatially Confined Electron Layers on Indium-Arsenide
砷化铟空间受限电子层的电子特性
  • 批准号:
    8912686
  • 财政年份:
    1990
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了