Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
基本信息
- 批准号:RGPIN-2019-06028
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My previous and current research has been focused on synthesis of thin films and micro-bridges of magnetic oxides (manganites) and studies of their electronic/material properties. These studies led to discovery of unusual material properties (such as, anisotropic magnetoresistance AMR) in these materials. Large AMR can be used in magnetic switching devices. I want AMR to reach colossal size in micro-bridges. My plans to increase the size of AMR include modification of nano-bridges of manganite films using an electron beam, as well as subjecting these bridges to stress (in piezoelectric devices). These procedures could change properties (electronic phase separation) in bridges of these materials. I am planning to use my experience with manganite materials and techniques to investigate the mechanisms responsible for unusual transport properties (resistive switching (RS)) in dielectric oxide films. Typically, the change in resistance in the dielectrics is "non-volatile" i.e., the resulting resistance can be maintained for a long time after the removal of the applied electric field. It was suggested that electric field-induced RS could be used for the next-generation random-access memory devices. I am planning first to investigate prototypical multilayer dielectric systems. There are many "parallels" between these oxides and manganites. Migration of defects and its formation are very sensitive to the shear stress in both materials. Also, the electrical transport in the dielectric oxides appears to be caused by the filamentary percolation conductivity, which is like that observed in manganites. I want to understand formation of these filaments as well as their influence on RS in dielectric oxides. I want to understand filaments in these dielectrics, the activation energy of its formation, and its structural nature. I want to answer important question; Are these filaments formed by extended defects or electro-migration of oxygen defects? My research plan is to investigate changes in the electric/structural material properties of the different types of dielectric oxide multilayer systems using piezoelectric (PMNT-based stress producing) devices, and ionic-liquid based devices capable of producing large electric field. Using this techniques, I want to separate effects due to the extended defects from those due to the electro-migration of oxygen defects in the formation of filamentary RS. The number of extended defects depends strongly on the shear stress. On the other hand, the electro-migration of defects depends strongly on the electric field. Therefore, the applied stress and electric field could help me to "tune" the dielectric system devices to conditions capable of producing large RS. The goal of this research could allow me to produce new type of devices for RS switching purposes, as well as to understand in more detail the mechanism of RS.
我以前和现在的研究主要集中在磁性氧化物(锰酸盐)的薄膜和微桥的合成及其电子/材料性质的研究。这些研究导致在这些材料中发现了不寻常的材料特性(如各向异性磁阻AMR)。大的AMR可用于磁性开关器件。我希望AMR在微型桥梁中达到巨大的规模。我计划增加AMR的尺寸,包括使用电子束修饰锰酸盐薄膜的纳米桥,以及使这些桥承受应力(在压电装置中)。这些过程可以改变这些材料桥的性质(电子相分离)。我计划利用我在锰矿材料和技术方面的经验来研究介电氧化物薄膜中异常输运特性(电阻开关(RS))的机制。通常,电介质中电阻的变化是“非易失性的”,即在去除外加电场后,产生的电阻可以保持很长时间。认为电场感应RS可用于下一代随机存取存储器器件。我计划首先研究多层介质系统的原型。这些氧化物和锰之间有许多“相似之处”。在这两种材料中,缺陷的迁移及其形成对剪应力都非常敏感。此外,电介质氧化物中的电传输似乎是由细丝渗透电导率引起的,这与在锰矿石中观察到的情况相似。我想了解这些细丝的形成以及它们对介电氧化物中RS的影响。我想了解这些电介质中的细丝,它形成的活化能,以及它的结构性质。我想回答一个重要的问题;这些细丝是由延伸缺陷或氧缺陷的电迁移形成的吗?我的研究计划是使用压电(基于pmnt的应力产生)装置和能够产生大电场的离子液体装置来研究不同类型介电氧化物多层系统的电/结构材料性能的变化。使用这种技术,我想将扩展缺陷的影响与线状RS形成过程中氧缺陷的电迁移所造成的影响分开。扩展缺陷的数量在很大程度上取决于剪切应力。另一方面,缺陷的电迁移很大程度上依赖于电场。因此,施加的应力和电场可以帮助我将介电系统器件“调谐”到能够产生大RS的条件。这项研究的目标可以让我生产用于RS开关的新型器件,并更详细地了解RS的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jung, Jan其他文献
Jung, Jan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jung, Jan', 18)}}的其他基金
Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
- 批准号:
RGPIN-2019-06028 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
- 批准号:
RGPIN-2019-06028 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
- 批准号:
RGPIN-2019-06028 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Materials and multilayers/nanowires for spintronics/superconducting applications
用于自旋电子学/超导应用的材料和多层/纳米线
- 批准号:
36319-2011 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Materials and multilayers/nanowires for spintronics/superconducting applications
用于自旋电子学/超导应用的材料和多层/纳米线
- 批准号:
36319-2011 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Materials and multilayers/nanowires for spintronics/superconducting applications
用于自旋电子学/超导应用的材料和多层/纳米线
- 批准号:
36319-2011 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Materials and multilayers/nanowires for spintronics/superconducting applications
用于自旋电子学/超导应用的材料和多层/纳米线
- 批准号:
36319-2011 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Materials and multilayers/nanowires for spintronics/superconducting applications
用于自旋电子学/超导应用的材料和多层/纳米线
- 批准号:
36319-2011 - 财政年份:2011
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Magneto-transport in cuprates, diborides, and manganites
铜酸盐、二硼化物和锰酸盐中的磁输运
- 批准号:
36319-2006 - 财政年份:2008
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Magneto-transport in cuprates, diborides, and manganites
铜酸盐、二硼化物和锰酸盐中的磁输运
- 批准号:
36319-2006 - 财政年份:2007
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
- 批准号:
RGPIN-2019-06028 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
- 批准号:
RGPIN-2019-06028 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Spatially confined electronic materials for resistive switching devices
用于电阻开关器件的空间受限电子材料
- 批准号:
RGPIN-2019-06028 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
RII Track-4: Probing the Electronic States of Quantum-Confined Topological Insulator Nanostructures
RII Track-4:探测量子限制拓扑绝缘体纳米结构的电子态
- 批准号:
1928819 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
DMREF: Paired Ionic-Electronic Conductors in Spatially Confined Self-Assembling Rod-Coil Block Copolymers and Bolaamphiphiles
DMREF:空间受限自组装棒-线圈嵌段共聚物和 Bola 两亲物中的成对离子电子导体
- 批准号:
1629369 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Electron-phonon interaction and its effects on electronic properties in quantum confined systems
量子限制系统中电子-声子相互作用及其对电子特性的影响
- 批准号:
10640312 - 财政年份:1998
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of device structures with simultaneous optical and electronic confinement and microscopic transmission measurements on their lasing, absorption, and gain characteristics
开发同时进行光学和电子限制以及对其激光、吸收和增益特性进行微观传输测量的器件结构
- 批准号:
10450113 - 财政年份:1998
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)