Data-driven Methods for Integration of Distributed Energy Resources
数据驱动的分布式能源整合方法
基本信息
- 批准号:RGPIN-2017-05866
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The balance between demand and supply is crucial to the safe, reliable and efficient operation of electric power systems. With the advent of distributed energy resources (such as photovoltaic panels and battery storage systems), maintaining this balance becomes more and more challenging. This is caused by the unprecedented complexity of modern power grids, and by the limited control over the energy produced by intermittent energy sources, such as wind and solar. This research program will address these challenges by exploiting energy system data (including data on generation and loads, weather forecasts and energy market conditions) for the design, monitoring and control of electric power grids.*** This research will leverage and expand the successful results developed during the previous discovery funding cycle, and under related collaborative R&D projects with industry. It will develop new solutions for managing energy in a variety of contexts, from residential buildings, through community energy storage systems, to grids powering extensive urban and rural areas with a high penetration of dispersed generation and renewable energy sources (such as roof-top solar panels or small wind turbines combined with battery energy storage).*** The use of a data-driven approach is a distinguishing aspect of this proposal. It means that the safe, reliable and efficient operation of modern electric power systems will be driven by local measurements of how the system is behaving now and has behaved in the past. The data-based predictive energy management methods and agent-based balancing protocols will effectively integrate smart grid components with forecasting, analytic and control functions that will also be developed in this research. This will lead to a new type of distributed, reconfigurable systems capable of local optimization while providing global efficiency and reliability through coordination. In practice, this will mean lower power bills for consumers and improved profitability for energy companies.*** The developed technology will be essential in realizing the expected environmental, reliability and economic benefits of modern electrical grids. This is crucial as the implementation of renewable generation technologies is expected to double by 2020, also doubling the current Canadian investment in renewables of C$10B per year. In addition to ensuring return on this investment, the research outcomes will also bring more direct economic benefits through commercialization, technology transfer and spin-offs. *** Over the course of five years, this research program will also train a number of highly qualified professionals (HQPs) including up to 4 PhD and 6 MSc graduates and 10 BSc students. They will be equipped with the expertise to design, plan and operate the future smart power systems, and conduct related advanced research in an academic or industry setting.
电力供需平衡是电力系统安全、可靠、高效运行的关键。随着分布式能源(如光伏板和电池存储系统)的出现,保持这种平衡变得越来越具有挑战性。这是由现代电网前所未有的复杂性以及对风能和太阳能等间歇性能源产生的能量的有限控制造成的。该研究计划将通过利用能源系统数据(包括发电和负荷数据,天气预报和能源市场条件)来解决这些挑战,用于电网的设计,监测和控制。 这项研究将利用和扩大在上一个发现资助周期中开发的成功成果,以及与行业合作的相关研发项目。它将为各种环境下的能源管理开发新的解决方案,从住宅建筑,通过社区能源存储系统,到为广泛的城市和农村地区供电的电网,分散发电和可再生能源(如屋顶太阳能电池板或小型风力涡轮机与电池储能相结合)。 使用数据驱动的方法是本建议的一个突出方面。这意味着现代电力系统的安全、可靠和高效运行将由系统现在和过去的行为方式的本地测量来驱动。基于数据的预测性能源管理方法和基于代理的平衡协议将有效地将智能电网组件与预测,分析和控制功能集成在一起,这些功能也将在本研究中开发。这将导致一种新型的分布式、可重构系统,能够进行局部优化,同时通过协调提供全局效率和可靠性。实际上,这将意味着消费者的电费更低,能源公司的盈利能力也会提高。 所开发的技术对于实现现代电网的预期环境、可靠性和经济效益至关重要。这一点至关重要,因为可再生能源发电技术的实施预计到2020年将翻一番,也将使加拿大目前每年100亿加元的可再生能源投资翻一番。除了确保这项投资的回报外,研究成果还将通过商业化、技术转让和衍生产品带来更直接的经济效益。*** 在五年的时间里,该研究计划还将培养一些高素质的专业人员(HQP),包括多达4名博士和6名硕士毕业生和10名理科学生。他们将具备设计,规划和运营未来智能电力系统的专业知识,并在学术或行业环境中进行相关的高级研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Musilek, Petr其他文献
Powering Batteryless Embedded Platforms by Piezoelectric Transducers: A Pilot Study
- DOI:
10.5755/j01.eie.25.2.23201 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:1.3
- 作者:
Prauzek, Michal;Konecny, Jaromir;Musilek, Petr - 通讯作者:
Musilek, Petr
Scan Matching by Cross-Correlation and Differential Evolution
- DOI:
10.3390/electronics8080856 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:2.9
- 作者:
Konecny, Jaromir;Kromer, Pavel;Musilek, Petr - 通讯作者:
Musilek, Petr
Performance Evaluation of Blockchain Systems: A Systematic Survey
- DOI:
10.1109/access.2020.3006078 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Fan, Caixiang;Ghaemi, Sara;Musilek, Petr - 通讯作者:
Musilek, Petr
IoT-based smart homes: A review of system architecture, software, communications, privacy and security
- DOI:
10.1016/j.iot.2018.08.009 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:5.9
- 作者:
Mocrii, Dragos;Chen, Yuxiang;Musilek, Petr - 通讯作者:
Musilek, Petr
Federated learning with hyperparameter-based clustering for electrical load forecasting
- DOI:
10.1016/j.iot.2021.100470 - 发表时间:
2021-12-01 - 期刊:
- 影响因子:5.9
- 作者:
Gholizadeh, Nastaran;Musilek, Petr - 通讯作者:
Musilek, Petr
Musilek, Petr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Musilek, Petr', 18)}}的其他基金
Data-driven Methods for Integration of Distributed Energy Resources
数据驱动的分布式能源整合方法
- 批准号:
RGPIN-2017-05866 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Data-driven Methods for Integration of Distributed Energy Resources
数据驱动的分布式能源整合方法
- 批准号:
RGPIN-2017-05866 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Towards Future Interconnected Electric System
迈向未来互联电力系统
- 批准号:
549804-2019 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
Data-driven Methods for Integration of Distributed Energy Resources
数据驱动的分布式能源整合方法
- 批准号:
RGPIN-2017-05866 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Towards Future Interconnected Electric System
迈向未来互联电力系统
- 批准号:
549804-2019 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
Data-driven Methods for Integration of Distributed Energy Resources
数据驱动的分布式能源整合方法
- 批准号:
RGPIN-2017-05866 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Vision-based quality control for building manufacturing
基于视觉的建筑制造质量控制
- 批准号:
517578-2017 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
Data-driven Methods for Integration of Distributed Energy Resources
数据驱动的分布式能源整合方法
- 批准号:
RGPIN-2017-05866 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Assessment and mitigation of the impacts of distributed generation on urban utilities
分布式发电对城市公用事业影响的评估和缓解
- 批准号:
477620-2014 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Development Grants
Evaluation of Hosting Capacity of Existing Distribution Systems
现有分发系统的托管能力评估
- 批准号:
500342-2016 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Engage Grants Program
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Data-driven and science-informed methods for the discovery of biomedical mechanisms and processes
用于发现生物医学机制和过程的数据驱动和科学信息方法
- 批准号:
10624014 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
- 批准号:
23K03437 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
- 批准号:
23K03913 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of data-driven methods for de novo design of novel enzymes.
开发用于新型酶从头设计的数据驱动方法。
- 批准号:
2890692 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Studentship
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
- 批准号:
2327710 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
- 批准号:
2327711 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
- 批准号:
2327709 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
OAC Core: Data-driven Methods and Techniques For Protecting Research and Critical Cyberinfrastructure By Characterizing and Defending Against Ransomware
OAC 核心:通过表征和防御勒索软件来保护研究和关键网络基础设施的数据驱动方法和技术
- 批准号:
2348719 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
CDS&E: Data-driven fast methods for high-energy plasma astrophysics
CDS
- 批准号:
2307684 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
- 批准号:
2308200 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant