IGNEOUS : A characterization platform for Image-Guided NEurOstimulation with UltraSound

IGNEOUS:超声图像引导神经刺激的表征平台

基本信息

  • 批准号:
    RGPIN-2019-04387
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research program aims to advance our understanding of the fundamental mechanisms of neurostimulation with focused ultrasound (FUs). For this purpose, we propose to evolve an in-house developed and highly successful software platform Proteus (NSERC Discovery-funded) for image-guided interventions with focused ultrasound, on which fourteen graduate and undergraduate High Qualified Personnel (HQP) have actively contributed to its development. The newly proposed platform will be specific for Image-Guided NEurOstimulation with UltraSound (IGNEOUS).******FUs can safely concentrate penetrating mechanical ultrasound waves deep into living tissue to produce distinctive biological effects. Low-intensity FUs refers to a type of exposure where pulsed FUs is sent with both low amplitude and low duty cycle. With low-intensity FUs, a transient ultrasound-based neurostimulation effect can be produced. A substantial amount of research remains to be done to understand the mechanisms of FUs neurostimulation, its overall effects in brain network connectivity and neuroplasticity.******This program will balance research activities in engineering and neuroscience. We will develop new methods for near real-time advanced image processing, multi-channel signal processing, closed-loop control algorithms, and human-machine interfaces. We will apply these engineering methods to establish controllable, penetrating, and non-destructive neurostimulation using FUs. The development of IGNEOUS on top of the Proteus platform, which can interface with pre-clinical and human-ready Magnetic Resonance Image (MRI)-guided focused ultrasound systems, will significantly facilitate translational efforts in the future. IGNEOUS will integrate near real-time assessment of brain activity from imaging, electrophysiology, and optical sources. For a better understanding of brain processes and cognitive mechanisms to study brain disorders, having a non-invasive, high-resolution and controlled method to induce neurostimulation is of the highest scientific relevance.******The IGNEOUS program will be guided by four core projects:*** Capture and conditioning of electroencephalography (EEG) signals, including sources utilized in animal models and humans*** Processing of functional MRI (fMRI) data directly in the IGNEOUS application*** Capture and processing of optical monitoring of calcium activation (Ca2+) of brain activity in rodent models *** Development of closed-loop algorithms for neurostimulation with FUs using data sources of brain activity (EEG, fMRI, Ca2+)******This program will provide high-impact opportunities for graduate students in the areas of Biomedical Engineering. The IGNEOUS platform will allow translational studies where the effects of FUs-induced neurostimulation can be studied using different models and imaging modalities. This translational capability will be the most innovative and impactful feature of the IGNEOUS platform.*****
拟议的研究计划旨在推进我们对聚焦超声(FU)神经刺激基本机制的理解。为此,我们建议发展一个内部开发和非常成功的软件平台Proteus(NSERC Discovery资助),用于聚焦超声的图像引导干预,14名研究生和本科生高素质人员(HQP)积极参与了其开发。新提出的平台将专门用于超声图像引导神经刺激(IGNEOUS)。** FU可以安全地集中穿透机械超声波深入到活组织中,产生独特的生物效应。低强度FU是指一种曝光类型,其中脉冲FU以低振幅和低占空比发送。使用低强度FU,可以产生基于瞬时超声的神经刺激效应。还有大量的研究要做,以了解FU神经刺激的机制,其对大脑网络连接和神经可塑性的整体影响。该计划将平衡工程和神经科学的研究活动。我们将开发近实时高级图像处理,多通道信号处理,闭环控制算法和人机界面的新方法。我们将应用这些工程方法来建立使用FU的可控、穿透性和非破坏性的神经刺激。IGNEOUS在Proteus平台上的开发,可以与临床前和人类准备的磁共振成像(MRI)引导聚焦超声系统接口,将大大促进未来的转化工作。IGNEOUS将整合来自成像、电生理学和光学源的近实时大脑活动评估。为了更好地了解大脑过程和认知机制以研究大脑疾病,具有非侵入性,高分辨率和受控的方法来诱导神经刺激具有最高的科学相关性。IGNEOUS计划将由四个核心项目指导:* 脑电图(EEG)信号的捕获和调节,包括在动物模型和人类中使用的源 * 直接在IGNEOUS应用程序中处理功能性MRI(fMRI)数据 * 捕获和处理啮齿动物模型中大脑活动钙激活(Ca2+)的光学监测 * 使用大脑活动(EEG,fMRI,Ca2+)数据源开发FU神经刺激的闭环算法 * 该计划将为生物医学工程领域的研究生提供高影响力的机会。IGNEOUS平台将允许进行转化研究,其中可以使用不同的模型和成像方式研究FU诱导的神经刺激的影响。这种翻译能力将是IGNEOUS平台最具创新性和影响力的功能。*

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pichardo, Samuel其他文献

New Design for an Endoesophageal Sector-Based Array for the Treatment of Atrial Fibrillation: A Parametric Simulation Study
Treatment of near-skull brain tissue with a focused device using shear-mode conversion: a numerical study
  • DOI:
    10.1088/0031-9155/52/24/008
  • 发表时间:
    2007-12-21
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Pichardo, Samuel;Hynynen, Kullervo
  • 通讯作者:
    Hynynen, Kullervo
Superposition method for modelling boundaries between media in viscoelastic finite difference time domain simulations
In vivo optimisation study for multi-baseline MR-based thermometry in the context of hyperthermia using MR-guided high intensity focused ultrasound for head and neck applications
  • DOI:
    10.3109/02656736.2014.981299
  • 发表时间:
    2014-12-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Pichardo, Samuel;Koehler, Max;Hynnyen, Kullervo
  • 通讯作者:
    Hynnyen, Kullervo

Pichardo, Samuel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pichardo, Samuel', 18)}}的其他基金

IGNEOUS : A characterization platform for Image-Guided NEurOstimulation with UltraSound
IGNEOUS:超声图像引导神经刺激的表征平台
  • 批准号:
    RGPIN-2019-04387
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
IGNEOUS : A characterization platform for Image-Guided NEurOstimulation with UltraSound
IGNEOUS:超声图像引导神经刺激的表征平台
  • 批准号:
    RGPIN-2019-04387
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
IGNEOUS : A characterization platform for Image-Guided NEurOstimulation with UltraSound
IGNEOUS:超声图像引导神经刺激的表征平台
  • 批准号:
    RGPIN-2019-04387
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Software development program for the fast prototyping of applications of focused ultrasound guided by magnetic resonance imaging
用于磁共振成像引导聚焦超声应用快速原型设计的软件开发程序
  • 批准号:
    386715-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Software development program for the fast prototyping of applications of focused ultrasound guided by magnetic resonance imaging
用于磁共振成像引导聚焦超声应用快速原型设计的软件开发程序
  • 批准号:
    386715-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Software development program for the fast prototyping of applications of focused ultrasound guided by magnetic resonance imaging
用于磁共振成像引导聚焦超声应用快速原型设计的软件开发程序
  • 批准号:
    386715-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Software development program for the fast prototyping of applications of focused ultrasound guided by magnetic resonance imaging
用于磁共振成像引导聚焦超声应用快速原型设计的软件开发程序
  • 批准号:
    386715-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Developing an ultra-high throughput droplet microfluidic workflow for genetic circuit characterization
开发用于遗传电路表征的超高通量液滴微流体工作流程
  • 批准号:
    10680017
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Temporospatial Single-Cell Characterization of Angiogenesis and Myocardial Regeneration in Small and Large Mammals
小型和大型哺乳动物血管生成和心肌再生的时空单细胞表征
  • 批准号:
    10751870
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Nanoluciferase reporter phage for rapid phenotypic characterization of resistance to next-generation antimycobacterial agents
纳米荧光素酶报告噬菌体用于快速表征下一代抗分枝杆菌药物的耐药性
  • 批准号:
    10593796
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
New Technologies for Accelerating the Discovery and Characterization of Neuroactives that Address Substance Use Disorders
加速发现和表征解决药物使用障碍的神经活性物质的新技术
  • 批准号:
    10680754
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Cell-free synthesis of influenza virus-like particles (VLPs) as prototyping platform for vaccine development and variant characterization
流感病毒样颗粒 (VLP) 的无细胞合成作为疫苗开发和变体表征的原型平台
  • 批准号:
    10648472
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Shigella Conjugate Vaccine (SCV4) Development, Characterization, and Pre-clinical Evaluation
志贺氏菌结合疫苗 (SCV4) 的开发、表征和临床前评估
  • 批准号:
    10704325
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Comprehensive Somatic Variant Characterization at the HGSC
HGSC 的综合体细胞变异表征
  • 批准号:
    10662645
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了