Programmable Nanophotonics for Deep Learning and Neuromorphic Computing

用于深度学习和神经形态计算的可编程纳米光子学

基本信息

  • 批准号:
    RGPIN-2018-05249
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

SYNOPSIS. The birth of computers shaped 20th century society and science. After decades of exponential improvement, the performance of von Neumann architectures in speed, efficiency, and generality, has begun to run into fundamental limits, as the shrinking of transistors reaches its physical limits. As a result, the gap between current computing capabilities and computing needs is widening. This insufficiency is apparent in problems involving complex systems, big data, or real-time requirements. Forays into unconventional (non-von Neumann) computing have only been partially successful due to the limitations in bandwidth and energy consumption posed by metal interconnects.******VISION orm state-of-the-art microelectronic processors in energy efficiency and computational speeds by seven- and four orders-of-magnitude, respectively. Scientific objectives include: 1) devices thrustenergy efficient (attoJoule/operation) photonic neurons with graphene-based electro-optic modulators; 2) architectures thrustscalable and programmable silicon photonic neural network architectures; and 3) applications thrustphotonic processors for generalized neuromorphic computing tasks including deep learning and nonlinear optimization for model predictive control. This program focuses on these computing tasks as they are notoriously difficult to solve.******IMPACT. An experimentally-driven investigation of neuromorphic nanophotonics will serve as the first feasibility proof of using integrated photonics for scalable information processing. The proposed program has the potential to shape the emerging field of generalized compute engines beyond von-Neumann architectures and help redefine their physical limitations. The resulting technology has the potential to transform social, scientific, and technological sectors including self-navigating vehicles, bio-informatics, security, and big data. This research will contribute to the culture of innovation excellence across the scientific community and Canada. The multi-disciplinary nature of the program promises to foster collaborative ties across Canadian academic institutions and the private sector. The program's educational impact rests on uniquely positioning students for a readied workforce in academia or industry to drive tomorrow's advancements in photonics, applied physics, and engineering for 21st century challenges.
提要。计算机的诞生塑造了20世纪的社会和科学。在经历了几十年的指数级改进之后,冯·诺伊曼体系结构在速度、效率和通用性方面的性能已经开始达到基本极限,因为晶体管的缩小达到了它的物理极限。因此,当前的计算能力和计算需求之间的差距正在拉大。这一不足在涉及复杂系统、大数据或实时需求的问题上表现得很明显。由于金属互连在带宽和能源消耗方面的限制,对非传统(非冯·诺伊曼)计算的尝试只取得了部分成功。*VISION ORM最先进的微电子处理器的能效和计算速度分别提高了七个和四个数量级。科学目标包括:1)利用基于石墨烯的电光调制器来推动能效(达到焦耳/操作)的光子神经元的器件;2)可推动可扩展和可编程的硅光子神经网络结构的体系结构;以及3)用于广义神经形态计算任务的光子处理器的应用,包括模型预测控制的深度学习和非线性优化。这个程序专注于这些计算任务,因为它们是出了名的难以解决。一项由实验驱动的神经形态纳米光子学研究将作为使用集成光子学进行可扩展信息处理的第一个可行性证明。拟议的计划有可能超越冯-诺伊曼体系结构,塑造新兴的通用计算引擎领域,并帮助重新定义其物理限制。由此产生的技术有可能改变社会、科学和技术部门,包括自动导航车辆、生物信息学、安全和大数据。这项研究将有助于整个科学界和加拿大的创新卓越文化。该项目的多学科性质有望促进加拿大学术机构和私营部门之间的合作关系。该项目的教育影响取决于为学生在学术界或工业中准备好的劳动力提供独特的定位,以推动未来光子学、应用物理学和工程学的进步,以应对21世纪的挑战。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shastri, Bhavin其他文献

Advances in photonic neuromorphic computing (Conference Presentation)
光子神经形态计算的进展(会议演讲)
  • DOI:
    10.1117/12.2509838
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sorger, Volker J.;George, Jonathan K.;Mehrabian, Armin;Shastri, Bhavin;El-Ghazawi, Tarek;Prucnal, Paul R.;Lee, El-Hang;He, Sailing
  • 通讯作者:
    He, Sailing

Shastri, Bhavin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shastri, Bhavin', 18)}}的其他基金

Programmable Nanophotonics for Deep Learning and Neuromorphic Computing
用于深度学习和神经形态计算的可编程纳米光子学
  • 批准号:
    RGPIN-2018-05249
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Cryogenic system for the exploration of low-temperature neuromorphic photonic systems
用于探索低温神经形态光子系统的低温系统
  • 批准号:
    RTI-2022-00457
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Tools and Instruments
Programmable Nanophotonics for Deep Learning and Neuromorphic Computing
用于深度学习和神经形态计算的可编程纳米光子学
  • 批准号:
    RGPIN-2018-05249
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Programmable Nanophotonics for Deep Learning and Neuromorphic Computing
用于深度学习和神经形态计算的可编程纳米光子学
  • 批准号:
    RGPIN-2018-05249
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Excitable logic for photonic information processing
光子信息处理的可兴奋逻辑
  • 批准号:
    543613-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program
Neurophotonic-electronic brain-machine interface system
神经光子电子脑机接口系统
  • 批准号:
    RTI-2020-00407
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Tools and Instruments
Programmable Nanophotonics for Deep Learning and Neuromorphic Computing
用于深度学习和神经形态计算的可编程纳米光子学
  • 批准号:
    RGPIN-2018-05249
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Programmable Nanophotonics for Deep Learning and Neuromorphic Computing
用于深度学习和神经形态计算的可编程纳米光子学
  • 批准号:
    DGECR-2018-00208
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement
Photonic cortical processor using graphene and silicon nanophotonics for complex systems analysis
使用石墨烯和硅纳米光子学进行复杂系统分析的光子皮质处理器
  • 批准号:
    469008-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Banting Postdoctoral Fellowships Tri-council
Photonic cortical processor using graphene and silicon nanophotonics for complex systems analysis
使用石墨烯和硅纳米光子学进行复杂系统分析的光子皮质处理器
  • 批准号:
    469008-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Banting Postdoctoral Fellowships Tri-council

相似海外基金

Quantum Nanophotonics with Atomically Thin Materials
原子薄材料的量子纳米光子学
  • 批准号:
    FT220100053
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    ARC Future Fellowships
Van der Waals nanophotonics
范德华纳米光子学
  • 批准号:
    2887484
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Studentship
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
  • 批准号:
    2320265
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
REU Site: Nanophotonics, Quantum Photonics, and Vision/Biomedical Optics at the University of Rochester.
REU 站点:罗切斯特大学的纳米光子学、量子光子学和视觉/生物医学光学。
  • 批准号:
    2244031
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
  • 批准号:
    2328540
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Nanophotonics for telecom quantum networks based on neutral silicon vacancy centers in diamond
基于金刚石中性硅空位中心的电信量子网络纳米光子学
  • 批准号:
    545932-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Nonlinear topological nanophotonics based on semiconductor photonic crystals
基于半导体光子晶体的非线性拓扑纳米光子学
  • 批准号:
    22H00298
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Exploring concepts in nanophotonics and metamaterials to create a 'super-scintillator' for time-of-flight positron emission tomography
探索纳米光子学和超材料概念,创建用于飞行时间正电子发射断层扫描的“超级闪烁体”
  • 批准号:
    10509318
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
Dissipative mode theories and reservoir engineering in quantum nanophotonics
量子纳米光子学中的耗散模式理论和储层工程
  • 批准号:
    RGPIN-2020-04069
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Scalable Integrated Nanophotonics with Subwavelength Gratings
职业:具有亚波长光栅的可扩展集成纳米光子学
  • 批准号:
    2144568
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了