Neurophotonic-electronic brain-machine interface system
神经光子电子脑机接口系统
基本信息
- 批准号:RTI-2020-00407
- 负责人:
- 金额:$ 10.93万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Research Tools and Instruments
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Brain mapping and unlocking the brain circuitry, can open incredible opportunities for the diagnosis and treatment of brain disorders from Parkinson and Alzheimer's disease to mental disorders. This has been the driving force of the scientific community's effort and has resulted in several ground-breaking innovations in brain study methods (eg. optogenetics, connectomics, magnetic resonance imaging, supercomputers for simulating the brain etc.). Each of these approaches faces either technological or fundamental challenges. As such, a complete mapping of the networks of billions of neurons in the brain remains a challenge.******We are developing an electronic-photonic brain-machine interface system for simultaneous optical stimulation of the brain cortex along with electrical recording of neurons. Our system is composed of microlasers and light-switchable graphene-based electrodes. The microlasers are engineered to be analogous to biological neurons and emit spikes' as light pulses with high temporal resolution and micron-scale spatial resolution. These light spikes switch on the graphene-based electrodes on the cortex to deliver the required electric voltage for neurons stimulation.******For modulating the microlasers, we are requesting an arbitrary waveform generator (AWG). An AWG can output user-defined arbitrary shape waveforms at high speeds that can mimic real-world signals (eg. spikes). The electrodes must be ultra-conformal to the complex topology of the brain's cortex to enable stable stimulation and recording of the neurons. Therefore, the electrodes' substrate must be ultra-thin, transparent to light, and biocompatible. Parylene is the only polymer that can satisfy these requirements. We are requesting a parylene deposition system (ie. a coater) to make the substrates for fabricating the light-switchable graphene electrodes. ******This equipment will support our collaborative and interdisciplinary research program, and the training of our 19 HQP across three departments (eng. physics, electrical eng., neuroscience) in addition to 10+ HQP of our collaborators (chemical eng., chemistry) as part of the NSERC CREATE-MAPS program who access our lab equipment (such as e-beam evaporator) on a daily basis. Striving for diversity including balanced gender representation, inclusivity and advancement of under-represented groups, our team consists of a female postdoc (Venezuela), 3 female graduate and 5 female undergrad students, and 2 graduate students from underrepresented minority.******Enabled by the bidirectional communication between the biological and artificial microlaser neurons, the proposed system is capable of copying' a complex unknown network of neurons in the brain to a known network of hardware components on a chip. The copied network can be used to unlock the communication patterns of the brain. If successful on a large-scale, such a brain mapping technique could be used to study neurological disorders that affect 1 billion people globally.
大脑映射和解锁大脑电路,可以为诊断和治疗从帕金森病和阿尔茨海默病到精神疾病的大脑疾病提供令人难以置信的机会。这一直是科学界努力的驱动力,并导致了大脑研究方法的几项突破性创新(例如:光遗传学、连接组学、磁共振成像、用于模拟大脑的超级计算机等)。这些方法中的每一种都面临着技术或根本性的挑战。因此,大脑中数十亿神经元网络的完整映射仍然是一个挑战。我们正在开发一种电子-光子脑机接口系统,用于同时对大脑皮层进行光学刺激沿着对神经元进行电记录。我们的系统由微激光器和光可切换的石墨烯基电极组成。微激光器被设计成类似于生物神经元,并以高时间分辨率和微米级空间分辨率的光脉冲形式发射尖峰。这些光脉冲会打开皮层上的石墨烯电极,为神经元刺激提供所需的电压。为了调制微激光器,我们需要一个任意波形发生器(AWG)。AWG可以高速输出用户定义的任意形状的波形,可以模拟真实世界的信号(例如,spikes)。电极必须与大脑皮层的复杂拓扑结构超共形,以实现对神经元的稳定刺激和记录。因此,电极的基底必须是超薄的、透光的和生物相容的。Parylene是唯一能够满足这些要求的聚合物。我们正在申请聚对二甲苯沉积系统(即。涂布机)来制造用于制造光可切换石墨烯电极的衬底。** 该设备将支持我们的合作和跨学科研究计划,以及我们在三个部门(工程物理,电气工程,神经科学)以及我们的合作者的10+ HQP(化学工程,化学)作为NSERC CREATE-MAPS计划的一部分,每天访问我们的实验室设备(如电子束蒸发器)。争取多样性,包括平衡的性别代表性,包容性和代表性不足的群体的进步,我们的团队由一名女博士后(委内瑞拉),3名女研究生和5名女本科生,以及2名来自代表性不足的少数民族的研究生组成。通过生物和人工微激光神经元之间的双向通信,所提出的系统能够将大脑中复杂的未知神经元网络复制到芯片上的已知硬件组件网络。复制的网络可以用来解锁大脑的通信模式。如果在大规模上取得成功,这种大脑映射技术可以用于研究影响全球10亿人的神经系统疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shastri, Bhavin其他文献
Advances in photonic neuromorphic computing (Conference Presentation)
光子神经形态计算的进展(会议演讲)
- DOI:
10.1117/12.2509838 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Sorger, Volker J.;George, Jonathan K.;Mehrabian, Armin;Shastri, Bhavin;El-Ghazawi, Tarek;Prucnal, Paul R.;Lee, El-Hang;He, Sailing - 通讯作者:
He, Sailing
Shastri, Bhavin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shastri, Bhavin', 18)}}的其他基金
Programmable Nanophotonics for Deep Learning and Neuromorphic Computing
用于深度学习和神经形态计算的可编程纳米光子学
- 批准号:
RGPIN-2018-05249 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Cryogenic system for the exploration of low-temperature neuromorphic photonic systems
用于探索低温神经形态光子系统的低温系统
- 批准号:
RTI-2022-00457 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Research Tools and Instruments
Programmable Nanophotonics for Deep Learning and Neuromorphic Computing
用于深度学习和神经形态计算的可编程纳米光子学
- 批准号:
RGPIN-2018-05249 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Programmable Nanophotonics for Deep Learning and Neuromorphic Computing
用于深度学习和神经形态计算的可编程纳米光子学
- 批准号:
RGPIN-2018-05249 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Excitable logic for photonic information processing
光子信息处理的可兴奋逻辑
- 批准号:
543613-2019 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Engage Grants Program
Programmable Nanophotonics for Deep Learning and Neuromorphic Computing
用于深度学习和神经形态计算的可编程纳米光子学
- 批准号:
RGPIN-2018-05249 - 财政年份:2019
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Programmable Nanophotonics for Deep Learning and Neuromorphic Computing
用于深度学习和神经形态计算的可编程纳米光子学
- 批准号:
RGPIN-2018-05249 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Programmable Nanophotonics for Deep Learning and Neuromorphic Computing
用于深度学习和神经形态计算的可编程纳米光子学
- 批准号:
DGECR-2018-00208 - 财政年份:2018
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Launch Supplement
Photonic cortical processor using graphene and silicon nanophotonics for complex systems analysis
使用石墨烯和硅纳米光子学进行复杂系统分析的光子皮质处理器
- 批准号:
469008-2014 - 财政年份:2015
- 资助金额:
$ 10.93万 - 项目类别:
Banting Postdoctoral Fellowships Tri-council
Photonic cortical processor using graphene and silicon nanophotonics for complex systems analysis
使用石墨烯和硅纳米光子学进行复杂系统分析的光子皮质处理器
- 批准号:
469008-2014 - 财政年份:2014
- 资助金额:
$ 10.93万 - 项目类别:
Banting Postdoctoral Fellowships Tri-council
相似国自然基金
基于循证医学本体论的临床元数据语言研究
- 批准号:30972549
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
双原子分子高激发振转能级的精确研究
- 批准号:10774105
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
基于安全多方计算的抗强制电子选举协议研究
- 批准号:60773114
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Leveraging genetic and electronic health records data to identify novel targets and drugs for treating alcohol
利用遗传和电子健康记录数据来确定治疗酒精的新靶点和药物
- 批准号:
10888495 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Consequences of Perinatal Nicotine Exposure on Functional Brainstem Development
围产期尼古丁暴露对功能性脑干发育的影响
- 批准号:
10752337 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Using genomics and extensive phenotyping to dissect the relationships between substance use disorders and chronic pain
利用基因组学和广泛的表型分析来剖析物质使用障碍和慢性疼痛之间的关系
- 批准号:
10797779 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Injury of blood brain and alveolar-endothelial barriers caused by alcohol and electronic cigarettes via purinergic receptor signaling
酒精和电子烟通过嘌呤受体信号传导引起血脑和肺泡内皮屏障损伤
- 批准号:
10638221 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:
Testing the accuracy of eye tracking as a screening tool for ASD in the general population
测试眼动追踪作为普通人群自闭症谱系障碍筛查工具的准确性
- 批准号:
10638066 - 财政年份:2023
- 资助金额:
$ 10.93万 - 项目类别:














{{item.name}}会员




