Deep Learning Applications in Structural and Functional MRI
深度学习在结构和功能 MRI 中的应用
基本信息
- 批准号:RGPIN-2018-04939
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Structural magnetic resonance imaging (sMRI) allows for non-invasive imaging of brain structures. Functional MRI (fMRI) measures certain aspects of human brain activity. sMRI and fMRI data (collectively, MRI data) are incredibly important in mind and brain research. Deep learning has been spectacularly successful in other fields like 2D image recognition and natural language processing. It has potential to greatly amplify the utility of MRI in neuroscience in multiple ways: automated quality control and preprocessing of the large MRI datasets now becoming available; improved decoding of fMRI brain signals; improved extraction of useful information from individual subjects' MRI data such as age, gender, and clinical health status. Important challenges must be overcome though.******Deep learning methods have been applied to MRI data, for example in segmenting brain regions in 2D MRI images, identifying brain activity patterns in fMRI, and differentiating patients with a clinical diagnosis (eg: schizophrenia) vs. healthy controls. Most previous studies used relatively small datasets (40 or fewer subjects). Objective 1 of this research program is to replicate some of the previous results with larger datasets including 100s or 1000s of subjects.******Deep learning requires large training data sets with 10,000s to millions of training examples. MRI datasets are comparatively small with only 1,000-2,000 examples in the largest MRI datasets currently available. To get around this, many deep learning applications in MRI extract many small 2D patches from the MRI data or else start with deep learning models trained on large datasets of everyday 2D images (eg: Imagenet). Objective 2a is to investigate incorporation of prior domain knowledge and assumptions (eg: fMRI blood oxygenation level dependent (BOLD) signal properties) into deep learning models as a means of reducing training dataset size requirements, as well as how this may affect model performance. Objective 2b is to extend deep learning methods to take advantage of 3D structure in sMRI and 4D structure in fMRI, currently ignored in most deep learning MRI studies.******Deep learning has a "black box" or non-interpretability problem in that it is typically not possible for a human to follow the deep learning model's "decision making" process. Objective 3 is to investigate methods for interpreting deep learning models as applied to MRI data. Success would improve neuroscientists' ability to extract knowledge from complex MRI datasets.**
结构磁共振成像(sMRI)允许对大脑结构进行非侵入性成像。功能性磁共振成像(fMRI)测量人类大脑活动的某些方面。sMRI和fMRI数据(统称为MRI数据)在大脑研究中非常重要。深度学习在2D图像识别和自然语言处理等其他领域取得了巨大成功。它有可能以多种方式极大地放大MRI在神经科学中的实用性:大型MRI数据集的自动化质量控制和预处理现在变得可用;改进fMRI大脑信号的解码;改进从个体受试者的MRI数据中提取有用信息,如年龄,性别和临床健康状况。但是,我们必须克服重大挑战 *。深度学习方法已被应用于MRI数据,例如在2D MRI图像中分割大脑区域,在fMRI中识别大脑活动模式,以及区分临床诊断患者(例如:精神分裂症)与健康对照。大多数以前的研究使用相对较小的数据集(40或更少的受试者)。本研究计划的目标1是用更大的数据集(包括100或1000名受试者)复制以前的一些结果。深度学习需要大量的训练数据集,其中包含1万到数百万个训练示例。MRI数据集相对较小,目前可用的最大MRI数据集中只有1,000 - 2,000个样本。为了解决这个问题,MRI中的许多深度学习应用程序从MRI数据中提取许多小的2D补丁,或者从在日常2D图像的大型数据集上训练的深度学习模型开始(例如:Imagenet)。目标2a是研究将先验领域知识和假设(例如:fMRI血氧水平依赖(BOLD)信号属性)纳入深度学习模型,作为减少训练数据集大小要求的一种手段,以及这可能如何影响模型性能。目标2b是扩展深度学习方法,以利用sMRI中的3D结构和fMRI中的4D结构,目前大多数深度学习MRI研究都忽略了这一点。深度学习有一个“黑箱”或不可解释性问题,因为人类通常不可能遵循深度学习模型的“决策”过程。目标3是研究解释应用于MRI数据的深度学习模型的方法。成功将提高神经科学家从复杂的MRI数据集中提取知识的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brown, Matthew其他文献
Percutaneous Radiofrequency Ablation Versus Robotic-Assisted Partial Nephrectomy for the Treatment of Small Renal Cell Carcinoma.
- DOI:
10.1007/s00270-016-1417-z - 发表时间:
2016-11 - 期刊:
- 影响因子:2.9
- 作者:
Pantelidou, Maria;Challacombe, Ben;McGrath, Andrew;Brown, Matthew;Ilyas, Shahzad;Katsanos, Konstantinos;Adam, Andreas - 通讯作者:
Adam, Andreas
Flexible adaptation of the seasonal krill maturity cycle in the laboratory
- DOI:
10.1093/plankt/fbq123 - 发表时间:
2011-05-01 - 期刊:
- 影响因子:2.1
- 作者:
Brown, Matthew;Kawaguchi, So;Nicol, Stephen - 通讯作者:
Nicol, Stephen
Comparative Benefit-to-Radiation Risk Ratio of Molecular Breast Imaging, Two-Dimensional Full-Field Digital Mammography with and without Tomosynthesis, and Synthetic Mammography with Tomosynthesis
- DOI:
10.1148/rycan.2019190005 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:0
- 作者:
Brown, Matthew;Covington, Matthew F. - 通讯作者:
Covington, Matthew F.
A Randomized Controlled Study of Silver-Based Burns Dressing in a Pediatric Emergency Department
- DOI:
10.1097/bcr.0000000000000273 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:1.4
- 作者:
Brown, Matthew;Dalziel, Stuart R.;Shepherd, Michael - 通讯作者:
Shepherd, Michael
A Summative Content Analysis of Stress and Coping among Parents of Children with Autism
- DOI:
10.1080/01926187.2020.1791764 - 发表时间:
2020-07-20 - 期刊:
- 影响因子:1.4
- 作者:
Brown, Matthew;Whiting, Jason;Kahumoku-Fessler, Emily - 通讯作者:
Kahumoku-Fessler, Emily
Brown, Matthew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brown, Matthew', 18)}}的其他基金
Deep Learning Applications in Structural and Functional MRI
深度学习在结构和功能 MRI 中的应用
- 批准号:
RGPIN-2018-04939 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning Applications in Structural and Functional MRI
深度学习在结构和功能 MRI 中的应用
- 批准号:
RGPIN-2018-04939 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning Applications in Structural and Functional MRI
深度学习在结构和功能 MRI 中的应用
- 批准号:
RGPIN-2018-04939 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning Applications in Structural and Functional MRI
深度学习在结构和功能 MRI 中的应用
- 批准号:
DGECR-2018-00247 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Launch Supplement
Heterobimetallic Actinide Coordination Polymers and Their Use As Sensors For the Detection of Harmful Vapours And As Oxidative Photocatalysts
异双金属锕系配位聚合物及其作为检测有害蒸气的传感器和作为氧化光催化剂的用途
- 批准号:
489206-2016 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Postgraduate Scholarships - Doctoral
Deep Learning Applications in Structural and Functional MRI
深度学习在结构和功能 MRI 中的应用
- 批准号:
RGPIN-2018-04939 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Two-Dimensional Gratings for Terahertz Bandpass Filters
用于太赫兹带通滤波器的二维光栅
- 批准号:
509378-2017 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
University Undergraduate Student Research Awards
Heterobimetallic Actinide Coordination Polymers and Their Use As Sensors For the Detection of Harmful Vapours And As Oxidative Photocatalysts
异双金属锕系配位聚合物及其作为检测有害蒸气的传感器和作为氧化光催化剂的用途
- 批准号:
489206-2016 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Postgraduate Scholarships - Doctoral
Synthesis and Characterization of New Paramagnetic Actinide Complexes with Mixed-Donor Amido-Amino-Siloxo Ligands
具有混合供体酰胺基-氨基-硅氧烷配体的新型顺磁锕系元素配合物的合成和表征
- 批准号:
464136-2014 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Thermal expansion study of quantum criticality
量子临界性的热膨胀研究
- 批准号:
449590-2013 - 财政年份:2013
- 资助金额:
$ 2.48万 - 项目类别:
University Undergraduate Student Research Awards
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Research Exchanges in the Mathematics of Deep Learning with Applications
深度学习数学及其应用研究交流
- 批准号:
EP/Y037308/1 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Research Grant
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403088 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403090 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Research Exchanges in the Mathematics of Deep Learning with Applications
深度学习数学及其应用研究交流
- 批准号:
EP/Y037286/1 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Research Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403089 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
- 批准号:
2309810 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
- 批准号:
2239307 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: ScaDL: New Approaches to Scaling Deep Learning for Science Applications on Supercomputers
协作研究:OAC 核心:ScaDL:在超级计算机上扩展深度学习科学应用的新方法
- 批准号:
2401246 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Targeted Infusion Project: Development and Implementation of courses in Deep Learning for Industrial and Societal Applications
有针对性的注入项目:工业和社会应用深度学习课程的开发和实施
- 批准号:
2306300 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant