Research Exchanges in the Mathematics of Deep Learning with Applications

深度学习数学及其应用研究交流

基本信息

  • 批准号:
    EP/Y037308/1
  • 负责人:
  • 金额:
    $ 24.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The subject of this proposal is "mathematical aspects of deep learning algorithms and their applications". We will address several questions related to the mathematical foundations of neural networks and set up an interdisciplinary team to aidthe design of test problems and validate the research results obtained. The impact of neural networks and deep learning in recent years has been profound and unprecedented. But in the wake of the vast progress in this area, several questions and concerns have been raised about the robustness, reliability, accuracy, reproducibility and feasibility of neural networks. It is widely recognised that the mathematical sciences, are a key enabling technology in many aspects of machine learning, not the least to resolve some of the above mentioned concerns. Mathematical language and formalism can bring more rigour and precision to the understanding of the deep learning methodology. Recently, deep learning methods have been applied to physical simulations, and to discover the underlying mathematical model. Most of the work in this area has been limited to proof-of-concept and has not been applied to practical problems. An alternative approach is to make use of reduced order modelling, and this can also be combined with machine learning methods. The aim of this project is to understand, study, prove, and test the properties of deep learning algorithms using ideas from dynamical systems, geometry and optimisation. The research objectives are three-fold. The first pertains to understanding the general properties of neural networks and their impact on a range of applications. The second is about the use of neural networks for investigating dynamical systems, and their applications to physical models. Finally we establish a new and complementary network of mathematicians from European and third countries for studying neural networks and the methods of deep learning with connections to a range of application areas through staff exchanges.
该提案的主题是“深度学习算法及其应用的数学方面”。我们将解决与神经网络的数学基础相关的几个问题,并建立一个跨学科的团队来帮助设计测试问题并验证所获得的研究结果。近年来,神经网络和深度学习的影响是深远而前所未有的。但随着这一领域的巨大进步,人们对神经网络的鲁棒性、可靠性、准确性、可重复性和可行性提出了一些问题和担忧。人们普遍认为,数学科学是机器学习许多方面的关键技术,尤其是解决上述一些问题。数学语言和形式主义可以为深度学习方法的理解带来更严格和精确的理解。最近,深度学习方法已被应用于物理模拟,并发现底层的数学模型。这一领域的大部分工作仅限于概念验证,尚未应用于实际问题。另一种方法是使用降阶建模,这也可以与机器学习方法相结合。该项目的目的是使用动力系统,几何和优化的思想来理解,研究,证明和测试深度学习算法的属性。研究目标有三个方面。第一个是关于理解神经网络的一般特性及其对一系列应用的影响。第二个是关于使用神经网络来研究动力系统,以及它们在物理模型中的应用。最后,我们建立了一个由欧洲和第三国数学家组成的新的互补网络,用于研究神经网络和深度学习方法,并通过人员交流与一系列应用领域建立联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carola-Bibiane Schönlieb其他文献

On the caveats of AI autophagy
关于人工智能自噬的注意事项
  • DOI:
    10.1038/s42256-025-00984-1
  • 发表时间:
    2025-02-10
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Xiaodan Xing;Fadong Shi;Jiahao Huang;Yinzhe Wu;Yang Nan;Sheng Zhang;Yingying Fang;Michael Roberts;Carola-Bibiane Schönlieb;Javier Del Ser;Guang Yang
  • 通讯作者:
    Guang Yang
Can generative AI replace immunofluorescent staining processes? A comparison study of synthetically generated cellpainting images from brightfield
  • DOI:
    10.1016/j.compbiomed.2024.109102
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiaodan Xing;Siofra Murdoch;Chunling Tang;Giorgos Papanastasiou;Jan Cross-Zamirski;Yunzhe Guo;Xianglu Xiao;Carola-Bibiane Schönlieb;Yinhai Wang;Guang Yang
  • 通讯作者:
    Guang Yang
Source-detector trajectory optimization for FOV extension in dental CBCT imaging
  • DOI:
    10.1016/j.csbj.2024.11.010
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    S M Ragib Shahriar Islam;Ander Biguri;Claudio Landi;Giovanni Di Domenico;Benedikt Schneider;Pascal Grün;Cristina Sarti;Ramona Woitek;Andrea Delmiglio;Carola-Bibiane Schönlieb;Dritan Turhani;Gernot Kronreif;Wolfgang Birkfellner;Sepideh Hatamikia
  • 通讯作者:
    Sepideh Hatamikia
Radiological tumour classification across imaging modality and histology
不同成像方式和组织学的放射学肿瘤分类
  • DOI:
    10.1038/s42256-021-00377-0
  • 发表时间:
    2021-08-09
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Jia Wu;Chao Li;Michael Gensheimer;Sukhmani Padda;Fumi Kato;Hiroki Shirato;Yiran Wei;Carola-Bibiane Schönlieb;Stephen John Price;David Jaffray;John Heymach;Joel W. Neal;Billy W. Loo;Heather Wakelee;Maximilian Diehn;Ruijiang Li
  • 通讯作者:
    Ruijiang Li
A linear transportation math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg" display="inline" id="d1e545" class="math"msupmrowmi mathvariant="normal"L/mi/mrowmrowmip/mi/mrow/msup/math distance for pattern recognition
用于模式识别的线性传输数学距离
  • DOI:
    10.1016/j.patcog.2023.110080
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Oliver M. Crook;Mihai Cucuringu;Tim Hurst;Carola-Bibiane Schönlieb;Matthew Thorpe;Konstantinos C. Zygalakis
  • 通讯作者:
    Konstantinos C. Zygalakis

Carola-Bibiane Schönlieb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carola-Bibiane Schönlieb', 18)}}的其他基金

Combining Knowledge And Data Driven Approaches to Inverse Imaging Problems
结合知识和数据驱动的方法来解决逆向成像问题
  • 批准号:
    EP/V029428/1
  • 财政年份:
    2021
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Fellowship
Cambridge Mathematics of Information in Healthcare (CMIH)
剑桥医疗保健信息数学 (CMIH)
  • 批准号:
    EP/T017961/1
  • 财政年份:
    2020
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Research Grant
PET++: Improving Localisation, Diagnosis and Quantification in Clinical and Medical PET Imaging with Randomised Optimisation
PET:通过随机优化改善临床和医学 PET 成像的定位、诊断和量化
  • 批准号:
    EP/S026045/1
  • 财政年份:
    2019
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Research Grant
Robust and Efficient Analysis Approaches of Remote Imagery for Assessing Population and Forest Health in India
用于评估印度人口和森林健康的稳健有效的遥感影像分析方法
  • 批准号:
    EP/T003553/1
  • 财政年份:
    2019
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Research Grant
EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging
EPSRC 多模态临床影像数学和统计分析中心
  • 批准号:
    EP/N014588/1
  • 财政年份:
    2016
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Research Grant
Efficient computational tools for inverse imaging problems
用于逆成像问题的高效计算工具
  • 批准号:
    EP/M00483X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Research Grant
Sparse & Higher Order Image Restoration
  • 批准号:
    EP/J009539/1
  • 财政年份:
    2012
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Research Grant

相似海外基金

SBIR Phase II: Zero Trust Solution for Precision Medicine and Precision Health Data Exchanges
SBIR 第二阶段:精准医疗和精准健康数据交换的零信任解决方案
  • 批准号:
    2226026
  • 财政年份:
    2024
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Cooperative Agreement
Conference: Meeting Support for the 9th Global Energy and Water Exchanges Open Science Conference in 2024
会议:会议支持2024年第九届全球能源与水交流开放科学大会
  • 批准号:
    2409447
  • 财政年份:
    2024
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Creating Synthetic Lichen to Elucidate how Morphology Impacts Mutualistic Exchanges in Microbial Communities.
合作研究:创造合成地衣来阐明形态学如何影响微生物群落的互惠交换。
  • 批准号:
    2334680
  • 财政年份:
    2024
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Standard Grant
ARCHCROP: Crossing Paths: Millet, Wheat and Cultural Exchanges in the Inner Asian Mountain Corridor, China
ARCHCROP:交叉路径:中国内亚山地走廊的小米、小麦和文化交流
  • 批准号:
    EP/Y027809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Fellowship
Collaborative Research: Creating Synthetic Lichen to Elucidate how Morphology Impacts Mutualistic Exchanges in Microbial Communities.
合作研究:创造合成地衣来阐明形态学如何影响微生物群落的互惠交换。
  • 批准号:
    2334681
  • 财政年份:
    2024
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Standard Grant
Research Exchanges in the Mathematics of Deep Learning with Applications
深度学习数学及其应用研究交流
  • 批准号:
    EP/Y037286/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Research Grant
Losing their Cool: are high-elevation heat exchanges warming Himalayan glaciers?
失去冷静:高海拔热交换会使喜马拉雅冰川变暖吗?
  • 批准号:
    NE/Z000033/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Research Grant
Collaborative Research: SOS-DCI / HNDS-R: Advancing Semantic Network Analysis to Better Understand How Evaluative Exchanges Shape Scientific Arguments
合作研究:SOS-DCI / HNDS-R:推进语义网络分析,以更好地理解评估性交流如何塑造科学论证
  • 批准号:
    2244805
  • 财政年份:
    2023
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Standard Grant
Japanese and Chinese Buddhist Exchanges at the Turn of the Twentieth Century: The Case of Indology
二十世纪初的中日佛教交流:以印度学为例
  • 批准号:
    23KF0183
  • 财政年份:
    2023
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: SOS-DCI / HNDS-R: Advancing Semantic Network Analysis to Better Understand How Evaluative Exchanges Shape Scientific Arguments
合作研究:SOS-DCI / HNDS-R:推进语义网络分析,以更好地理解评估性交流如何塑造科学论证
  • 批准号:
    2244804
  • 财政年份:
    2023
  • 资助金额:
    $ 24.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了