Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
基本信息
- 批准号:RGPIN-2019-04696
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The advent of next generation sequencing has revolutionized the way the genome, transcriptome and exome are studied, typically producing huge amounts of data to be analyzed. In this regard, machine learning has proposed a paramount of successful methods applied to knowledge discovery, retrieval and prediction of biological phenomena. Deep learning, in particular, has been successfully applied to extract knowledge in a wide range of applications in biology, medicine, data and network security, text mining, and computer vision, just to mention a few. There are, however, some challenges and limitations in the available data and the current approaches, as well as some obstacles yet to overcome, including lack of annotation of different variables, lack of large-scale and labelled training data, variety of variables, variations of formats across different datasets, and lack of sample-specificity in the knowledge extracted.******This research program aims to develop integrative machine learning systems used to extract relevant biological knowledge from multiple variables, multiple datasets with large numbers of samples, and different biological indicators including “-omics”, text and graphics from the literature. The integrative model will involve multiple datasets, multi-omics and multiple variables of different types of diseases. In the different sub-projects, we are planning to apply multi-modal, multi-task and transfer (deep and shallow) machine learning approaches that integrate different types of data. The approaches to be developed will integrate different schemes of representational deep leaning that utilize different forms of training such as adversary, convolutional and recurrent networks, with or without memory. ******Development of integrative machine learning approaches have not emerged significantly in multi-omics data, and hence, incorporating textual data, integrated with molecular measurements of different forms is a promising avenue for developing novel approaches, which can be then used in other fields as well, such as data security, networking and additive manufacturing, just to mention a few. The lack of reliable algorithms for integrating and disambiguating inconsistent data are crucial, as they are for missing variables thus, integrative semi-supervised approaches are crucial in this regard. The methods to be developed will be used by other researchers in discovering biological knowledge from large datasets via sharing publications and a system that will be deployed in standard bioinformatics and open source platforms. In addition, it is expected that under this research program one postdoctoral fellow, three PhD students, and several Master's and undergraduate students will be trained, gaining key skills in big data analytics and software development of tools and platforms.
下一代测序的出现彻底改变了基因组、转录组和外显子组的研究方式,通常会产生大量待分析的数据。在这方面,机器学习已经提出了一个应用于知识发现,检索和预测生物现象的最重要的成功方法。特别是深度学习,已经成功地应用于生物学、医学、数据和网络安全、文本挖掘和计算机视觉等广泛应用中的知识提取。然而,现有数据和当前方法存在一些挑战和局限性,还有一些障碍有待克服,包括缺乏对不同变量的注释,缺乏大规模和标记的训练数据,变量种类繁多,不同数据集之间的格式差异,以及提取的知识缺乏样本特异性。该研究计划旨在开发综合机器学习系统,用于从多个变量,多个具有大量样本的数据集以及不同的生物指标(包括“组学”,文本和图形)中提取相关的生物学知识。综合模型将涉及不同类型疾病的多数据集、多组学和多变量。在不同的子项目中,我们计划应用多模式,多任务和转移(深度和浅层)机器学习方法,整合不同类型的数据。将要开发的方法将整合不同的代表性深度学习方案,这些方案利用不同形式的训练,例如对手,卷积和递归网络,有或没有记忆。** 综合机器学习方法的发展在多组学数据中并没有显着出现,因此,将文本数据与不同形式的分子测量相结合是开发新方法的一个有前途的途径,然后也可以用于其他领域,例如数据安全,网络和增材制造,仅举几例。缺乏可靠的算法来整合和消除不一致的数据是至关重要的,因为它们是缺失的变量,因此,综合半监督方法在这方面是至关重要的。其他研究人员将使用开发的方法,通过共享出版物和将部署在标准生物信息学和开源平台上的系统,从大型数据集中发现生物知识。 此外,预计在该研究计划下,将培训一名博士后研究员,三名博士生和几名硕士和本科生,获得大数据分析和工具和平台软件开发的关键技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rueda, Luis其他文献
Transcriptomics Signature from Next-Generation Sequencing Data Reveals New Transcriptomic Biomarkers Related to Prostate Cancer
- DOI:
10.1177/1176935119835522 - 发表时间:
2019-03-13 - 期刊:
- 影响因子:2
- 作者:
Alkhateeb, Abedalrhman;Rezaeian, Iman;Rueda, Luis - 通讯作者:
Rueda, Luis
A Probabilistic Model to Predict Household Occupancy Profiles for Home Energy Management Applications
- DOI:
10.1109/access.2021.3063502 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Rueda, Luis;Sansregret, Simon;Kelouwani, Sousso - 通讯作者:
Kelouwani, Sousso
Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data
- DOI:
10.1186/s12859-020-3345-9 - 发表时间:
2020-03-11 - 期刊:
- 影响因子:3
- 作者:
Hamzeh, Osama;Alkhateeb, Abedalrhman;Rueda, Luis - 通讯作者:
Rueda, Luis
Spot detection and image segmentation in DNA microarray data.
- DOI:
10.2165/00822942-200504010-00001 - 发表时间:
2005-01-01 - 期刊:
- 影响因子:0
- 作者:
Qin, Li;Rueda, Luis;Ngom, Alioune - 通讯作者:
Ngom, Alioune
Computationally repurposing drugs for breast cancer subtypes using a network-based approach.
- DOI:
10.1186/s12859-022-04662-6 - 发表时间:
2022-04-20 - 期刊:
- 影响因子:3
- 作者:
Firoozbakht, Forough;Rezaeian, Iman;Rueda, Luis;Ngom, Alioune - 通讯作者:
Ngom, Alioune
Rueda, Luis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rueda, Luis', 18)}}的其他基金
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
- 批准号:
RGPIN-2019-04696 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
- 批准号:
RGPIN-2019-04696 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
NSERC I2I Phase Ia: An Intelligent Framework for Social Engineering Cyber Security Training
NSERC I2I 第一阶段:社会工程网络安全培训智能框架
- 批准号:
567660-2021 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Idea to Innovation
Market Assessment of an intelligent framework for social engineering cyber security training
社会工程网络安全培训智能框架的市场评估
- 批准号:
556923-2020 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Idea to Innovation
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
- 批准号:
RGPIN-2019-04696 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Integrative machine learning methods for prediction of protein-protein interactions and analysis of the dynamics of interactomes
用于预测蛋白质-蛋白质相互作用和分析相互作用组动态的综合机器学习方法
- 批准号:
RGPIN-2014-05084 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Integrative machine learning methods for prediction of protein-protein interactions and analysis of the dynamics of interactomes
用于预测蛋白质-蛋白质相互作用和分析相互作用组动态的综合机器学习方法
- 批准号:
RGPIN-2014-05084 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Integrative machine learning methods for prediction of protein-protein interactions and analysis of the dynamics of interactomes
用于预测蛋白质-蛋白质相互作用和分析相互作用组动态的综合机器学习方法
- 批准号:
RGPIN-2014-05084 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
An intelligent system that supports additive manufacturing and machining
支持增材制造和加工的智能系统
- 批准号:
498929-2016 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Engage Grants Program
Integrative machine learning methods for prediction of protein-protein interactions and analysis of the dynamics of interactomes
用于预测蛋白质-蛋白质相互作用和分析相互作用组动态的综合机器学习方法
- 批准号:
RGPIN-2014-05084 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Development of a Novel Integrative Recovery Index Using Machine Learning
利用机器学习开发新型综合恢复指数
- 批准号:
578515-2022 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Alliance Grants
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
- 批准号:
RGPIN-2019-04696 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Toward an Integrative Approach to Machine Learning for Traffic Management
交通管理机器学习的综合方法
- 批准号:
2225087 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Integrative Network-Based Machine Learning Approaches for Cancer Bioinformatics and Bio-Molecular Network Reconstruction
用于癌症生物信息学和生物分子网络重建的基于网络的综合机器学习方法
- 批准号:
RGPIN-2016-05017 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
- 批准号:
RGPIN-2019-04696 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Identification of Biomarkers and Novel Pathways of Alcoholic Liver Disease by Leveraging Metabolomics, Tissue Imaging Mass Spectrometry, and Integrative Machine Learning
利用代谢组学、组织成像质谱和综合机器学习鉴定酒精性肝病的生物标志物和新途径
- 批准号:
10221329 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
- 批准号:
10251069 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
- 批准号:
10703364 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Machine Learning for Integrative Modeling of the Immune System in Clinical Settings
临床环境中免疫系统综合建模的机器学习
- 批准号:
10028766 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Integrative Network-Based Machine Learning Approaches for Cancer Bioinformatics and Bio-Molecular Network Reconstruction
用于癌症生物信息学和生物分子网络重建的基于网络的综合机器学习方法
- 批准号:
RGPIN-2016-05017 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual