Integrative machine learning methods for prediction of protein-protein interactions and analysis of the dynamics of interactomes
用于预测蛋白质-蛋白质相互作用和分析相互作用组动态的综合机器学习方法
基本信息
- 批准号:RGPIN-2014-05084
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proteins are large molecules that constitute the body of cellular machinery of any living organism or biological system, playing important roles in fundamental and essential biological processes such as cellular morphology and physiology, DNA synthesis, transcription, translation, splicing and many others. Proteins, however, do not act in isolation but perform their functions by interacting with molecules such as DNA, RNA, and other proteins. The interactome aims to study the main aspects of protein interactions in a living system. The interactome is rather dynamic as the interactions and ultimately functions are manifested in a temporal and spatial manner. To understand the complex cellular mechanisms involved in a biological system, it is necessary to study the nature and specificity of these interactions and the dynamics involved in it at the molecular level, for which prediction of protein-protein interactions (PPIs) has played a significant role.
Although prediction of PPIs has been studied from many different perspectives in solving different problems, the main aspects that are studied include: sites of interfaces (where), arrangement of proteins in a complex (how – aka docking), type of protein complex (what), molecular interaction event (if), and temporal and spatial trends (dynamics). This proposal focuses mostly on prediction of types, interaction events and temporal aspects of PPIs, more specifically, on devising machine learning approaches for prediction and analysis of PPIs from high-throughput data, understanding the dynamic aspects of these interactions and their relationships with genomic and transcriptional features. The main goals of this research are to: (1) develop new machine learning approaches for prediction of high-throughput PPIs, which include structural and sequence-based information; (2) analyze and elucidate the main properties of the dynamics associated with high-throughput PPIs; (3) integrate transcriptomics data from next generation sequencing techniques with interactomics in applications for detecting biomarkers and understanding the transcriptogenomics mechanisms involved in prostate and breast cancer.
Predicting interactions and unraveling the important properties and dynamic aspects of PPIs will help understand cellular and molecular mechanisms, improving disease diagnosis and treatment, and drug development. This will provide valuable information for researchers in biology, biochemistry and life sciences. In addition, integrative approaches for transcriptomics are novel in applications such as prostate cancer, which is one of the applicant's collaborative projects. This will bring a much better insight than the current approaches that associate biomarkers (chimeric events or splicing) with genes. However, isoforms or forms of proteins that interact with other proteins via domains or short motifs are part of interaction networks which are also dynamic. The advantage of integrating transcriptomics and interactomics to produce more robust biomarkers will benefit disease screening, diagnosis, treatment and follow-up. One of the primary goals in cancer studies is detection at early stages, and in many cases, cancer patients are over-treated. Prostate and breast cancer are among the most common types of cancer in Canada, and have been among the main causes of cancer death over the past ten years. Using machine learning techniques for prediction and discovery of reliable biomarkers can lead to improvements in cancer diagnosis, especially in early detection. By means of multi-disciplinary collaborations, the findings in interactomics and integration with transcriptoimcs will benefit the development of novel therapeutic strategies and lower recurrence in cancer.
蛋白质是构成任何活生物体或生物系统的细胞机械体的大分子,在基本和必需的生物过程中发挥重要作用,如细胞形态学和生理学、DNA合成、转录、翻译、剪接等。然而,蛋白质并不是孤立地发挥作用,而是通过与DNA、RNA和其他蛋白质等分子相互作用来发挥其功能。相互作用组旨在研究生命系统中蛋白质相互作用的主要方面。相互作用组是动态的,因为相互作用和最终功能以时间和空间的方式表现出来。为了理解生物系统中涉及的复杂细胞机制,有必要在分子水平上研究这些相互作用的性质和特异性以及其中涉及的动力学,蛋白质-蛋白质相互作用(PPI)的预测在其中发挥了重要作用。
虽然PPIs的预测已经从许多不同的角度在解决不同的问题进行了研究,研究的主要方面包括:接口的网站(在哪里),在一个复杂的蛋白质的安排(如何- aka对接),蛋白质复合物的类型(什么),分子相互作用事件(如果),和时间和空间的趋势(动力学)。该提案主要集中在PPI的类型,相互作用事件和时间方面的预测,更具体地说,设计机器学习方法,用于从高通量数据预测和分析PPI,了解这些相互作用的动态方面及其与基因组和转录特征的关系。本研究的主要目标是:(1)开发新的机器学习方法用于预测高通量PPI,包括基于结构和序列的信息:(2)分析和阐明与高通量PPI相关的动力学的主要性质;(三)将来自下一代测序技术的转录组学数据与用于检测生物标志物和理解生物标志物的应用中的相互作用组学相结合。前列腺癌和乳腺癌的转录基因组学机制。
预测相互作用和阐明PPI的重要特性和动态方面将有助于理解细胞和分子机制,改善疾病诊断和治疗以及药物开发。这将为生物学、生物化学和生命科学的研究人员提供有价值的信息。此外,转录组学的整合方法在前列腺癌等应用中是新颖的,这是申请人的合作项目之一。这将带来比目前将生物标志物(嵌合事件或剪接)与基因相关联的方法更好的洞察力。然而,通过结构域或短基序与其他蛋白质相互作用的蛋白质的同种型或形式是也是动态的相互作用网络的一部分。整合转录组学和相互作用组学以产生更强大的生物标志物的优势将有利于疾病筛查,诊断,治疗和随访。癌症研究的主要目标之一是早期发现,在许多情况下,癌症患者被过度治疗。前列腺癌和乳腺癌是加拿大最常见的癌症类型之一,并且在过去十年中一直是癌症死亡的主要原因之一。使用机器学习技术预测和发现可靠的生物标志物可以改善癌症诊断,特别是早期检测。通过多学科合作,相互作用组学的发现以及与转录组学的整合将有利于开发新的治疗策略和降低癌症复发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rueda, Luis其他文献
Transcriptomics Signature from Next-Generation Sequencing Data Reveals New Transcriptomic Biomarkers Related to Prostate Cancer
- DOI:
10.1177/1176935119835522 - 发表时间:
2019-03-13 - 期刊:
- 影响因子:2
- 作者:
Alkhateeb, Abedalrhman;Rezaeian, Iman;Rueda, Luis - 通讯作者:
Rueda, Luis
A Probabilistic Model to Predict Household Occupancy Profiles for Home Energy Management Applications
- DOI:
10.1109/access.2021.3063502 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Rueda, Luis;Sansregret, Simon;Kelouwani, Sousso - 通讯作者:
Kelouwani, Sousso
Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data
- DOI:
10.1186/s12859-020-3345-9 - 发表时间:
2020-03-11 - 期刊:
- 影响因子:3
- 作者:
Hamzeh, Osama;Alkhateeb, Abedalrhman;Rueda, Luis - 通讯作者:
Rueda, Luis
Spot detection and image segmentation in DNA microarray data.
- DOI:
10.2165/00822942-200504010-00001 - 发表时间:
2005-01-01 - 期刊:
- 影响因子:0
- 作者:
Qin, Li;Rueda, Luis;Ngom, Alioune - 通讯作者:
Ngom, Alioune
Computationally repurposing drugs for breast cancer subtypes using a network-based approach.
- DOI:
10.1186/s12859-022-04662-6 - 发表时间:
2022-04-20 - 期刊:
- 影响因子:3
- 作者:
Firoozbakht, Forough;Rezaeian, Iman;Rueda, Luis;Ngom, Alioune - 通讯作者:
Ngom, Alioune
Rueda, Luis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rueda, Luis', 18)}}的其他基金
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
- 批准号:
RGPIN-2019-04696 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
- 批准号:
RGPIN-2019-04696 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
NSERC I2I Phase Ia: An Intelligent Framework for Social Engineering Cyber Security Training
NSERC I2I 第一阶段:社会工程网络安全培训智能框架
- 批准号:
567660-2021 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Idea to Innovation
Market Assessment of an intelligent framework for social engineering cyber security training
社会工程网络安全培训智能框架的市场评估
- 批准号:
556923-2020 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Idea to Innovation
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
- 批准号:
RGPIN-2019-04696 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
- 批准号:
RGPIN-2019-04696 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Integrative machine learning methods for prediction of protein-protein interactions and analysis of the dynamics of interactomes
用于预测蛋白质-蛋白质相互作用和分析相互作用组动态的综合机器学习方法
- 批准号:
RGPIN-2014-05084 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Integrative machine learning methods for prediction of protein-protein interactions and analysis of the dynamics of interactomes
用于预测蛋白质-蛋白质相互作用和分析相互作用组动态的综合机器学习方法
- 批准号:
RGPIN-2014-05084 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
An intelligent system that supports additive manufacturing and machining
支持增材制造和加工的智能系统
- 批准号:
498929-2016 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Engage Grants Program
Integrative machine learning methods for prediction of protein-protein interactions and analysis of the dynamics of interactomes
用于预测蛋白质-蛋白质相互作用和分析相互作用组动态的综合机器学习方法
- 批准号:
RGPIN-2014-05084 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
- 批准号:
10722568 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Integrative species delimitation in spider mites by phylogenomics, morphometrics and niche modeling
通过系统基因组学、形态计量学和生态位建模对叶螨进行综合物种界定
- 批准号:
22KF0325 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Integrative analysis of whole genomes and transcriptomes from multiple cell types in rare disease patients
罕见病患者多种细胞类型的全基因组和转录组的综合分析
- 批准号:
10587683 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
A multi-omic and integrative longitudinal evaluation of the role of lipid, antioxidant, and osmoprotectant metabolites in the genitourinary syndrome of menopause by race and ethnicity.
按种族和民族对脂质、抗氧化剂和渗透保护代谢物在更年期泌尿生殖综合征中的作用进行多组学和综合纵向评估。
- 批准号:
10643444 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Integrative single-cell spatial transcriptomic, anatomical, and functional profiling of brain-wide ensembles engaged by opioid relapse
与阿片类药物复发有关的全脑整体的综合单细胞空间转录组、解剖学和功能分析
- 批准号:
10772455 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Integrative and trans-ethnic study to understand psoriasis associated signals
了解银屑病相关信号的综合和跨种族研究
- 批准号:
10657973 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Random Field Methods for integrative genomic analysis and high-dimensional risk prediction of congenital heart defects
用于先天性心脏病综合基因组分析和高维风险预测的随机场方法
- 批准号:
10905156 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Identifying molecular traits associated with extreme human longevity using an AI based integrative approach
使用基于人工智能的综合方法识别与人类极端长寿相关的分子特征
- 批准号:
10745015 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Integrative risk modeling for early prediction of endometriosis and its long-term health outcomes
子宫内膜异位症早期预测及其长期健康结果的综合风险模型
- 批准号:
10567234 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别: