NSERC I2I Phase Ia: An Intelligent Framework for Social Engineering Cyber Security Training

NSERC I2I 第一阶段:社会工程网络安全培训智能框架

基本信息

  • 批准号:
    567660-2021
  • 负责人:
  • 金额:
    $ 9.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Idea to Innovation
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Human beings are the weakest link in cybersecurity, and are, in fact, more vulnerable than computers. In recent years, countless major security incidents have succeeded because of human errors and the lack of appropriate security training and awareness. In this regard, although there is a wide range of cybersecurity products in the market to protect computers and networks, almost none or a few immature products exist for developing and training users in cybersecurity awareness. At present, organizations are still relying on hands-on workshops, online courses, and traditional training methods for cybersecurity awareness, which are ineffective and unscalable. In this regard, we have developed and patented a new multilayer technology for cybersecurity awareness training to help organizations understand and mitigate potential security risks associated with social engineering threats. Our technology utilizes the principles of artificial intelligence, gamification theory and cybersecurity strategies for enabling organizations to implement a social engineering firewall. The system provides an estimation of potential social engineering threats for a given organization by measuring the digital footprint of the organization assets on public sources, including the Internet, social networks and media, among others. Based on the estimated social engineering threats, using deep reinforcement learning (RL) algorithms our technology constructs and executes an interactive anti-social engineering training program that combines both passive and active training. Our technology then creates and recommends a social engineering firewall security strategy that is used within the organization network to reduce and mitigate the risk of any potential social engineering threats. The main goal of this project is to develop a scalable prototype that gives a proof of concept that the reinforcement learning approach will craft and execute users-specific social engineering attacks. The RL prototype aims at interacting with the users by performing social engineering attacks via different types of media, including social/professional/research networks and/or emails.
人类是网络安全中最薄弱的环节,实际上比计算机更脆弱。 近年来,由于人为错误以及缺乏适当的安全培训和意识,无数重大安全事件得以成功。在这方面,虽然市场上有各种各样的网络安全产品来保护计算机和网络,但几乎没有或只有少数不成熟的产品用于培养和培训用户的网络安全意识。目前,组织仍然依赖于实践研讨会,在线课程和传统的网络安全意识培训方法,这些方法效率低下且不可扩展。在这方面,我们开发了一种用于网络安全意识培训的新多层技术并获得专利,以帮助组织了解和减轻与社会工程威胁相关的潜在安全风险。我们的技术利用人工智能、游戏化理论和网络安全策略的原理,使组织能够实施社会工程防火墙。该系统通过测量组织资产在公共来源(包括互联网、社交网络和媒体等)上的数字足迹,为给定组织提供潜在社会工程威胁的估计。基于估计的社会工程威胁,使用深度强化学习(RL)算法,我们的技术构建并执行了一个结合被动和主动训练的交互式反社会工程训练计划。然后,我们的技术会创建并推荐一个社会工程防火墙安全策略,该策略在组织网络中使用,以减少和缓解任何潜在的社会工程威胁的风险。该项目的主要目标是开发一个可扩展的原型,提供概念证明,即强化学习方法将制作和执行特定于用户的社会工程攻击。RL原型旨在通过不同类型的媒体(包括社交/专业/研究网络和/或电子邮件)执行社会工程攻击,与用户进行交互。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rueda, Luis其他文献

Transcriptomics Signature from Next-Generation Sequencing Data Reveals New Transcriptomic Biomarkers Related to Prostate Cancer
  • DOI:
    10.1177/1176935119835522
  • 发表时间:
    2019-03-13
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Alkhateeb, Abedalrhman;Rezaeian, Iman;Rueda, Luis
  • 通讯作者:
    Rueda, Luis
A Probabilistic Model to Predict Household Occupancy Profiles for Home Energy Management Applications
  • DOI:
    10.1109/access.2021.3063502
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Rueda, Luis;Sansregret, Simon;Kelouwani, Sousso
  • 通讯作者:
    Kelouwani, Sousso
Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data
  • DOI:
    10.1186/s12859-020-3345-9
  • 发表时间:
    2020-03-11
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Hamzeh, Osama;Alkhateeb, Abedalrhman;Rueda, Luis
  • 通讯作者:
    Rueda, Luis
Spot detection and image segmentation in DNA microarray data.
  • DOI:
    10.2165/00822942-200504010-00001
  • 发表时间:
    2005-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qin, Li;Rueda, Luis;Ngom, Alioune
  • 通讯作者:
    Ngom, Alioune
Computationally repurposing drugs for breast cancer subtypes using a network-based approach.
  • DOI:
    10.1186/s12859-022-04662-6
  • 发表时间:
    2022-04-20
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Firoozbakht, Forough;Rezaeian, Iman;Rueda, Luis;Ngom, Alioune
  • 通讯作者:
    Ngom, Alioune

Rueda, Luis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rueda, Luis', 18)}}的其他基金

Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
  • 批准号:
    RGPIN-2019-04696
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
  • 批准号:
    RGPIN-2019-04696
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Market Assessment of an intelligent framework for social engineering cyber security training
社会工程网络安全培训智能框架的市场评估
  • 批准号:
    556923-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Idea to Innovation
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
  • 批准号:
    RGPIN-2019-04696
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Integrative Machine Learning Models for Discovery and Validation of Biological Knowledge
用于发现和验证生物知识的综合机器学习模型
  • 批准号:
    RGPIN-2019-04696
  • 财政年份:
    2019
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Integrative machine learning methods for prediction of protein-protein interactions and analysis of the dynamics of interactomes
用于预测蛋白质-蛋白质相互作用和分析相互作用组动态的综合机器学习方法
  • 批准号:
    RGPIN-2014-05084
  • 财政年份:
    2018
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Integrative machine learning methods for prediction of protein-protein interactions and analysis of the dynamics of interactomes
用于预测蛋白质-蛋白质相互作用和分析相互作用组动态的综合机器学习方法
  • 批准号:
    RGPIN-2014-05084
  • 财政年份:
    2017
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
Integrative machine learning methods for prediction of protein-protein interactions and analysis of the dynamics of interactomes
用于预测蛋白质-蛋白质相互作用和分析相互作用组动态的综合机器学习方法
  • 批准号:
    RGPIN-2014-05084
  • 财政年份:
    2016
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
An intelligent system that supports additive manufacturing and machining
支持增材制造和加工的智能系统
  • 批准号:
    498929-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Engage Grants Program
Integrative machine learning methods for prediction of protein-protein interactions and analysis of the dynamics of interactomes
用于预测蛋白质-蛋白质相互作用和分析相互作用组动态的综合机器学习方法
  • 批准号:
    RGPIN-2014-05084
  • 财政年份:
    2015
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Bio-Sourced/Natural Intermediates to Dyes and Pigments: Phthalocyanines (I2I Phase 1).
染料和颜料的生物来源/天然中间体:酞菁(I2I 第 1 期)。
  • 批准号:
    570997-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Idea to Innovation
A Single Cell Isolating System for Genomics Applications, Phase 1 I2I
用于基因组学应用的单细胞分离系统,第一阶段 I2I
  • 批准号:
    544495-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Idea to Innovation
Digital Memory Augmentation based on how the brain works (i2i Phase 1)
基于大脑工作方式的数字记忆增强(i2i 第一阶段)
  • 批准号:
    577502-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Idea to Innovation
Atmospheric Pressure Spatial Atomic Layer Deposition of Barrier Coatings for Sustainable Packaging (I2I Phase IIb)
用于可持续包装的屏障涂层的大气压空间原子层沉积(I2I Phase IIb)
  • 批准号:
    570986-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Idea to Innovation
NSERC I2I Phase 1: Local regeneration of CO2 to achieve scalable electroreduction to multi-carbon products
NSERC I2I 第一阶段:CO2 的局部再生,以实现多碳产品的可扩展电解还原
  • 批准号:
    561574-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Idea to Innovation
I2I Phase 1: Methods and Catalysts for Isotopic Labeling of Amino Acids
I2I 第一阶段:氨基酸同位素标记的方法和催化剂
  • 批准号:
    567606-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Idea to Innovation
I2I Phase I: A Portable Blood Group Typing Analyzer
I2I 第一阶段:便携式血型分型分析仪
  • 批准号:
    566842-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Idea to Innovation
I2I Phase I: Optimization of selective lithium recovery from spent lithium iron phosphate batteries with a green and environmentally responsible process
I2I 第一阶段:采用绿色环保工艺优化从废磷酸铁锂电池中选择性回收锂
  • 批准号:
    566796-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Idea to Innovation
I2I Phase 1a: Development of thermally-sensitive protected cysteine residues for controlled disulfide bond formation
I2I 阶段 1a:开发热敏保护半胱氨酸残基以控制二硫键形成
  • 批准号:
    561575-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Idea to Innovation
I2I Phase I: Testing of real-time aerodynamics sensor system under realistic conditions
I2I第一阶段:在真实条件下测试实时空气动力学传感器系统
  • 批准号:
    567659-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Idea to Innovation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了