Radicals at Interfaces: Understanding and Exploiting the Physical Behaviour of Radicals on the Surfaces of Biological and Bulk Materials
界面处的自由基:了解和利用生物和散装材料表面上自由基的物理行为
基本信息
- 批准号:RGPIN-2015-05488
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Chemical species known as radicals tend to be highly reactive because they have one or more unpaired electrons. In living systems, oxygen-centred radicals are present because of the respiration of oxygen. These oxygen-centred radicals are extremely damaging to biological materials such as proteins because they initiate chemical reactions that destroy biomaterial function and consequently induce disease states. In high-technology applications, radicals often serve as defect centres that inhibit the performance of electronic devices such as computer chips by acting as charge-traps. In both of these diverse example systems, radicals are ubiquitous.***My research uses computational chemistry and physics tools to simulate systems in which radicals are important. We also work in close collaboration with experimentalists who test our predictions and help us to implement our ideas. I am working toward understanding the physical properties of radicals in biological systems in order to prevent their damaging effects and solid-state systems to exploit their unique properties for technological applications. In the case of biological systems, my research group is studying how radicals chemically damage biological molecules like proteins. This will allow us to understand how these deleterious reactions are inhibited naturally in biological systems and how chemical intervention can play a role in preventing diseases that may be caused by radicals. In solid-state systems, we seek to exploit the unique character associated with radicals in order to create new hybrid systems with interesting and viable functionality. We will do this by simulating semiconducting and conducting surfaces functionalized with nanostructured radical species. Ultimately, the goal of our work is to provide benefit to Canada by developing insights into how radicals contribute to diseases like Alzheimer's and Parkinson's and into new electronic technologies that have the potential to be put into production. **
被称为自由基的化学物质往往具有高度反应性,因为它们具有一个或多个未配对电子。 在生命系统中,由于氧气的呼吸作用,存在以氧为中心的自由基。 这些以氧为中心的自由基对生物材料如蛋白质具有极大的破坏性,因为它们引发化学反应,破坏生物材料的功能,从而诱发疾病状态。 在高科技应用中,自由基通常作为缺陷中心,通过充当电荷陷阱来抑制电子设备(例如计算机芯片)的性能。 在这两个不同的例子系统中,激进分子无处不在。我的研究使用计算化学和物理工具来模拟自由基很重要的系统。 我们还与实验学家密切合作,他们测试我们的预测并帮助我们实现我们的想法。 我正在努力了解生物系统中自由基的物理特性,以防止其破坏性影响,并利用固态系统的独特特性进行技术应用。 在生物系统的情况下,我的研究小组正在研究自由基如何化学破坏蛋白质等生物分子。 这将使我们了解这些有害反应如何在生物系统中自然抑制,以及化学干预如何在预防可能由自由基引起的疾病中发挥作用。 在固态系统中,我们试图利用与自由基相关的独特特性,以创建具有有趣和可行功能的新混合系统。 我们将通过模拟用纳米结构自由基物质功能化的半导体和导电表面来做到这一点。 最终,我们工作的目标是通过深入了解自由基如何导致阿尔茨海默氏症和帕金森氏症等疾病,以及有可能投入生产的新电子技术,为加拿大带来好处。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dilabio, Gino其他文献
Dilabio, Gino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342024 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
- 批准号:
2340085 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Continuing Grant
Understanding the physico-chemical evolution at the steel-cement interfaces in geological CO2 storage environments
了解地质二氧化碳储存环境中钢-水泥界面的物理化学演化
- 批准号:
2911029 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Studentship
An Atomic Level Understanding of Optimal Characteristics of TiO2 Protection Layers and Photoelectrode/TiO2 Interfaces for Efficient and Stable Solar Fuel Production
从原子水平了解 TiO2 保护层和光电极/TiO2 界面的最佳特性,以实现高效、稳定的太阳能燃料生产
- 批准号:
2350199 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Continuing Grant
CAREER: Prediction and understanding of thermal transport across successive interfaces
职业:预测和理解连续界面上的热传输
- 批准号:
2337749 - 财政年份:2024
- 资助金额:
$ 2.55万 - 项目类别:
Continuing Grant
NCS-FR: Insect-based brain-machine interfaces and robots for understanding odor-driven navigation
NCS-FR:基于昆虫的脑机接口和机器人,用于理解气味驱动的导航
- 批准号:
2319060 - 财政年份:2023
- 资助金额:
$ 2.55万 - 项目类别:
Continuing Grant
Understanding dynamic interfaces in electrochemical systems
了解电化学系统中的动态界面
- 批准号:
FT220100666 - 财政年份:2023
- 资助金额:
$ 2.55万 - 项目类别:
ARC Future Fellowships
Understanding and controlling complex modified electrochemical interfaces using novel measurements and model systems
使用新颖的测量和模型系统理解和控制复杂的改性电化学界面
- 批准号:
RGPIN-2022-04419 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
US-Ireland R&D Partnership: Ga2O3: Understanding Growth, Interfaces and Defects to enable next generation Electronics (GUIDE)
美国-爱尔兰 R
- 批准号:
2154535 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant