Renormalization for Circle Maps with Singularities and for Directed Polymers

具有奇点的圆图和定向聚合物的重整化

基本信息

  • 批准号:
    328565-2013
  • 负责人:
  • 金额:
    $ 2.77万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Renormalization theory was first developed in physics in the context of quantum field theory and statistical mechanics. At the end of 70's in the pioneering work of M. Feigenbaum the renormalization ideas paved their way into the theory of dynamical systems. By now renormalization is one of the most powerful methods in modern theoretical physics and mathematics. The main idea is to look at a system at large scales in a simplified way which takes into account only effective interaction of large blocks and ignores many fine details of a system at small scales. Using the idea of renormalization one can often establish universal scaling laws which describe asymptotic behaviour of many seemingly different systems. The large scale can correspond to either large spatial distances and volumes in statistical mechanics, or to large time in the context of dynamical systems. Remarkably, in many examples such universal behaviour can be studied rigorously. Roughly speaking, it can be described in terms of fixed points of renormalization. Simple fixed points correspond to standard scaling exponents as in the case of diffusion in probability theory. At the same time critical exponents for systems near phase transitions, or for maps with critical points correspond to highly non-trivial renormalization fixed points. Such critical systems are of great interest for renormalization theory. The proposed research project aims to study critical fixed points in two different settings. One of them deals with critical circle maps. The other one is related to the theory of directed polymers. These are very active research areas, and we hope to contribute significantly to the understanding of universal scaling properties in both cases.
重整化理论最初是在量子场论和统计学的背景下在物理学中发展起来的。 力学70年代末,M.费根鲍姆重整化思想为他们 进入动力系统理论。到目前为止,重整化是最强大的方法之一, 现代理论物理学和数学。其主要思想是以一种简化的方式来看待大尺度系统,这种方式只考虑大块体的有效相互作用,而忽略了小尺度系统的许多细节。利用重整化的思想,人们通常可以建立描述许多看似不同的系统的渐近行为的普适标度律。大尺度可以对应于统计力学中的大空间距离和体积,也可以对应于动力系统中的大时间。值得注意的是,在许多例子中,这样的普遍行为可以被严格地研究。粗略地说,它可以用重整化的不动点来描述。简单的不动点对应于概率论中扩散的标准标度指数。同时临界指数系统附近的相变,或与临界点映射对应的高度非平凡重整化不动点。这种临界系统对于重整化理论是非常有意义的。 拟议的研究项目旨在研究两种不同环境中的临界不动点。其中之一涉及临界圆图。另一个是定向聚合物理论。这些都是非常活跃的研究领域,我们希望在这两种情况下的普遍标度性质的理解作出重大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khanin, Konstantin其他文献

THE INTERMEDIATE DISORDER REGIME FOR DIRECTED POLYMERS IN DIMENSION 1+1
  • DOI:
    10.1214/13-aop858
  • 发表时间:
    2014-05-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Alberts, Tom;Khanin, Konstantin;Quastel, Jeremy
  • 通讯作者:
    Quastel, Jeremy
C1-RIGIDITY OF CIRCLE MAPS WITH BREAKS FOR ALMOST ALL ROTATION NUMBERS
Robust local Holder rigidity of circle maps with breaks
On Dynamics of Lagrangian Trajectories for Hamilton-Jacobi Equations
Renormalization Horseshoe and Rigidity for Circle Diffeomorphisms with Breaks
  • DOI:
    10.1007/s00220-013-1706-1
  • 发表时间:
    2013-06-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Khanin, Konstantin;Teplinsky, Alexey
  • 通讯作者:
    Teplinsky, Alexey

Khanin, Konstantin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khanin, Konstantin', 18)}}的其他基金

Renormalization and Quasi-Periodicity
重整化和准周期性
  • 批准号:
    RGPIN-2018-04510
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization and Quasi-Periodicity
重整化和准周期性
  • 批准号:
    RGPIN-2018-04510
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization and Quasi-Periodicity
重整化和准周期性
  • 批准号:
    RGPIN-2018-04510
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization and Quasi-Periodicity
重整化和准周期性
  • 批准号:
    RGPIN-2018-04510
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization and Quasi-Periodicity
重整化和准周期性
  • 批准号:
    RGPIN-2018-04510
  • 财政年份:
    2018
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization for Circle Maps with Singularities and for Directed Polymers
具有奇点的圆图和定向聚合物的重整化
  • 批准号:
    328565-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization for Circle Maps with Singularities and for Directed Polymers
具有奇点的圆图和定向聚合物的重整化
  • 批准号:
    328565-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization for Circle Maps with Singularities and for Directed Polymers
具有奇点的圆图和定向聚合物的重整化
  • 批准号:
    446217-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Renormalization for Circle Maps with Singularities and for Directed Polymers
具有奇点的圆图和定向聚合物的重整化
  • 批准号:
    328565-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization for Circle Maps with Singularities and for Directed Polymers
具有奇点的圆图和定向聚合物的重整化
  • 批准号:
    446217-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似国自然基金

Circle Packing理论与正规族理论研究
  • 批准号:
    10701084
  • 批准年份:
    2007
  • 资助金额:
    15.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
  • 批准号:
    MR/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Research Grant
Does time move straight ahead or in a circle: Cognitive opposition of horizontal versus vertical axis in Chinese time expressions
时间是直线前进还是绕圈:汉语时间表达中横轴与纵轴的认知对立
  • 批准号:
    23K00485
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Talking Circle for Native American Youth Living Well (A Yo Li)
美国原住民青年美好生活谈话圈(A Yo Li)
  • 批准号:
    10739361
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
Facilitate hospital discharge, enabling a circle of care with social and healthcare workers, preventing re-hospitalization, an efficient transition into the communities and prescribing need-based services to remain older adult patients at home longer.
促进出院,与社会和医护人员建立循环护理,防止再次住院,有效过渡到社区,并提供基于需求的服务,使老年患者在家中停留更长时间。
  • 批准号:
    487944
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Miscellaneous Programs
Community-Driven Indigenous Research, Cultural Strengths & Leadership to Advance Equity in Drug Use Outcomes (CIRCLE)
社区驱动的本土研究、文化优势
  • 批准号:
    10713129
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
Circle RNA Regulation of Lung Cancer Metastasis
Circle RNA对肺癌转移的调控
  • 批准号:
    10637900
  • 财政年份:
    2023
  • 资助金额:
    $ 2.77万
  • 项目类别:
The Circle of Artists (1926-1953): Artistic Agency in the Totalitarian Salon
艺术家圈子(1926-1953):极权主义沙龙中的艺术机构
  • 批准号:
    2751280
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Studentship
The Construction of the "American Cultural Circle" at the End of the 19th Century and the Spread of Romance
19世纪末“美国文化圈”的构建与浪漫主义的传播
  • 批准号:
    22K00411
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
How to be Good: An Exploration of the Moral Circle and its Relationship with Wealth and Individualism
如何做好人:道德圈及其与财富和个人主义关系的探索
  • 批准号:
    2712638
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Studentship
Squaring the circle: making sense of the dusty, magnetized interstellar medium beyond two dimensions
化圆为方:理解二维之外的尘埃磁化星际介质
  • 批准号:
    RGPIN-2018-05965
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了