Computational prediction of genetic systems in prokaryotes

原核生物遗传系统的计算预测

基本信息

  • 批准号:
    RGPIN-2018-06180
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

DNA sequencing constantly reveals vast numbers of genes that cannot be annotated with a function by their similarity to known genes (function by homology). These unknown genes seem to outnumber those that can be assigned a function. Predicting functional associations, such as those between genes whose products work in the same biochemical pathway, can help suggest functions to the products of orphan genes, and might also help refine functional annotations predicted by homology. The most reliable clue to functional associations in prokaryotes (Bacteria and Archaea) might be the prediction of operons, adjacent genes in the same DNA strand transcribed into a single messenger RNA. Functional associations between separated genes can be inferred from equivalent genes predicted to be in an operon in a different genome (operon rearrangements).***The proposed research program focuses on three main objectives: (1) developing and testing strategies for organizing proteins into functional families; (2) improving and streamlining the prediction of operons and the transference of functional associations across genomes; (3) To study the evolution of genetic systems by following their associations and reassociations across genomes and metagenomes.***Predicted functional associations can be organized into networks. The structure and properties of these networks can help identify probable false positives, and produce clusters of genes thus organized into potential functional groups. Gene products will be organized into protein families. In turn, these families will be organized into groups of functionally interacting families. Such organization might suggest later experimental examination of functions, and the prioritization of experimental work. Associations of uncommon genes to known functions, will help discover different ways in which life forms have solved similar problems. Unknown groups will also help discover different ways in which life has solved similar problems, or even lead to discovering novel biochemistries.***Our results will be important for end users interested in finding novel genes involved in particular functions. For example, the work will point to novel genes associated with activities of environmental and industrial interest, such as groups of genes associated with cellulose degradation, useful in the biofuel industry; or with cellulose biosynthesis, useful in manufacturing of biodegradable items. The results will also impact the design of artificial biological systems. For example, we expect to find novel versions of existing functional modules, which would facilitate the selection of versions with predictable behaviours for biosystem engineering.
DNA sequencing constantly reveals vast numbers of genes that cannot be annotated with a function by their similarity to known genes (function by homology). These unknown genes seem to outnumber those that can be assigned a function. Predicting functional associations, such as those between genes whose products work in the same biochemical pathway, can help suggest functions to the products of orphan genes, and might also help refine functional annotations predicted by homology. The most reliable clue to functional associations in prokaryotes (Bacteria and Archaea) might be the prediction of operons, adjacent genes in the same DNA strand transcribed into a single messenger RNA. Functional associations between separated genes can be inferred from equivalent genes predicted to be in an operon in a different genome (operon rearrangements).***The proposed research program focuses on three main objectives: (1) developing and testing strategies for organizing proteins into functional families; (2) improving and streamlining the prediction of operons and the transference of functional associations across genomes; (3) To study the evolution of genetic systems by following their associations and reassociations across genomes and metagenomes.***Predicted functional associations can be organized into networks. The structure and properties of these networks can help identify probable false positives, and produce clusters of genes thus organized into potential functional groups. Gene products will be organized into protein families. In turn, these families will be organized into groups of functionally interacting families. Such organization might suggest later experimental examination of functions, and the prioritization of experimental work. Associations of uncommon genes to known functions, will help discover different ways in which life forms have solved similar problems. Unknown groups will also help discover different ways in which life has solved similar problems, or even lead to discovering novel biochemistries.***Our results will be important for end users interested in finding novel genes involved in particular functions. For example, the work will point to novel genes associated with activities of environmental and industrial interest, such as groups of genes associated with cellulose degradation, useful in the biofuel industry; or with cellulose biosynthesis, useful in manufacturing of biodegradable items. The results will also impact the design of artificial biological systems. For example, we expect to find novel versions of existing functional modules, which would facilitate the selection of versions with predictable behaviours for biosystem engineering.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MorenoHagelsieb, Gabriel其他文献

MorenoHagelsieb, Gabriel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MorenoHagelsieb, Gabriel', 18)}}的其他基金

Computational prediction of genetic systems in prokaryotes
原核生物遗传系统的计算预测
  • 批准号:
    RGPIN-2018-06180
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Computational prediction of genetic systems in prokaryotes
原核生物遗传系统的计算预测
  • 批准号:
    RGPIN-2018-06180
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Computational prediction of genetic systems in prokaryotes
原核生物遗传系统的计算预测
  • 批准号:
    RGPIN-2018-06180
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Computational prediction of genetic systems in prokaryotes
原核生物遗传系统的计算预测
  • 批准号:
    RGPIN-2018-06180
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Figuring out genetic functional systems in Prokaryotes through computational genomics and metagenomics
通过计算基因组学和宏基因组学弄清楚原核生物的遗传功能系统
  • 批准号:
    312480-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Figuring out genetic functional systems in Prokaryotes through computational genomics and metagenomics
通过计算基因组学和宏基因组学弄清楚原核生物的遗传功能系统
  • 批准号:
    312480-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Figuring out genetic functional systems in Prokaryotes through computational genomics and metagenomics
通过计算基因组学和宏基因组学弄清楚原核生物的遗传功能系统
  • 批准号:
    312480-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Figuring out genetic functional systems in Prokaryotes through computational genomics and metagenomics
通过计算基因组学和宏基因组学弄清楚原核生物的遗传功能系统
  • 批准号:
    312480-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Figuring out genetic functional systems in Prokaryotes through computational genomics and metagenomics
通过计算基因组学和宏基因组学弄清楚原核生物的遗传功能系统
  • 批准号:
    312480-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Functional modules in prokaryotic genomes
原核生物基因组中的功能模块
  • 批准号:
    312480-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
  • 批准号:
    82372016
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
  • 批准号:
    51079080
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
非编码RNA与蛋白质相互作用预测算法的研究
  • 批准号:
    31000586
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computational Modeling Core
计算建模核心
  • 批准号:
    10551707
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
  • 批准号:
    10660234
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Computational Strategies to Tailor Existing Interventions for First Major Depressive Episodes to Inform and Test Personalized Interventions
针对首次严重抑郁发作定制现有干预措施的计算策略,以告知和测试个性化干预措施
  • 批准号:
    10650695
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Developing a computational platform for induced-fit and chemogenetic drug design
开发诱导拟合和化学遗传学药物设计的计算平台
  • 批准号:
    10680745
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Computational approaches to characterize heterogeneity and improve risk stratification in complex disease phenotypes
表征复杂疾病表型异质性并改善风险分层的计算方法
  • 批准号:
    10805689
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Enabling Rational Design of Drug Targeting Protein-Protein Interactions with Physics-based Computational Modeling
通过基于物理的计算模型合理设计靶向药物的蛋白质-蛋白质相互作用
  • 批准号:
    10710974
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Computational Methods for Inferring Single-cell DNA Methylation and its Spatial Landscape
推断单细胞 DNA 甲基化及其空间景观的计算方法
  • 批准号:
    10679088
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
Computational prediction of genetic systems in prokaryotes
原核生物遗传系统的计算预测
  • 批准号:
    RGPIN-2018-06180
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Computational approaches to characterize heterogeneity and improve risk stratification in complex disease phenotypes
表征复杂疾病表型异质性并改善风险分层的计算方法
  • 批准号:
    10448966
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
Complementary animal and computational models for biomarker identification in ascending thoracic aortic aneurysm
升主动脉瘤生物标志物识别的补充动物和计算模型
  • 批准号:
    10503513
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了