Computational prediction of genetic systems in prokaryotes
原核生物遗传系统的计算预测
基本信息
- 批准号:RGPIN-2018-06180
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DNA sequencing constantly reveals vast numbers of genes that cannot be annotated with a function by their similarity to known genes (function by homology). These unknown genes seem to outnumber those that can be assigned a function. Predicting functional associations, such as those between genes whose products work in the same biochemical pathway, can help suggest functions to the products of orphan genes, and might also help refine functional annotations predicted by homology. The most reliable clue to functional associations in prokaryotes (Bacteria and Archaea) might be the prediction of operons, adjacent genes in the same DNA strand transcribed into a single messenger RNA. Functional associations between separated genes can be inferred from equivalent genes predicted to be in an operon in a different genome (operon rearrangements).The proposed research program focuses on three main objectives: (1) developing and testing strategies for organizing proteins into functional families; (2) improving and streamlining the prediction of operons and the transference of functional associations across genomes; (3) To study the evolution of genetic systems by following their associations and reassociations across genomes and metagenomes.Predicted functional associations can be organized into networks. The structure and properties of these networks can help identify probable false positives, and produce clusters of genes thus organized into potential functional groups. Gene products will be organized into protein families. In turn, these families will be organized into groups of functionally interacting families. Such organization might suggest later experimental examination of functions, and the prioritization of experimental work. Associations of uncommon genes to known functions, will help discover different ways in which life forms have solved similar problems. Unknown groups will also help discover different ways in which life has solved similar problems, or even lead to discovering novel biochemistries.Our results will be important for end users interested in finding novel genes involved in particular functions. For example, the work will point to novel genes associated with activities of environmental and industrial interest, such as groups of genes associated with cellulose degradation, useful in the biofuel industry; or with cellulose biosynthesis, useful in manufacturing of biodegradable items. The results will also impact the design of artificial biological systems. For example, we expect to find novel versions of existing functional modules, which would facilitate the selection of versions with predictable behaviours for biosystem engineering.
DNA测序不断地揭示了大量的基因,这些基因不能通过它们与已知基因的相似性来标注功能(功能通过同源性)。这些未知基因的数量似乎超过了那些被赋予某种功能的基因。预测功能关联,例如产物在同一生化途径中工作的基因之间的功能关联,可以帮助提示孤儿基因产物的功能,也可能有助于完善同源性预测的功能注释。在原核生物(细菌和古细菌)中,最可靠的功能关联线索可能是对操纵子的预测,操纵子是同一DNA链中转录成单个信使RNA的邻近基因。分离基因之间的功能关联可以从预测在不同基因组的操纵子中的等效基因推断出来(操纵子重排)。提出的研究计划侧重于三个主要目标:(1)开发和测试将蛋白质组织成功能家族的策略;(2)改进和简化操纵子的预测和跨基因组功能关联的转移;(3)通过追踪遗传系统在基因组和宏基因组间的关联和再关联来研究遗传系统的进化。预测的功能关联可以组织成网络。这些网络的结构和特性可以帮助识别可能的假阳性,并产生基因簇,从而组织成潜在的功能群。基因产物将被组织成蛋白质家族。反过来,这些家庭将被组织成功能相互作用的家庭群体。这样的组织可能建议以后对功能进行实验检查,并确定实验工作的优先次序。将不常见的基因与已知的功能联系起来,将有助于发现生命形式解决类似问题的不同方式。未知群体还将有助于发现生命解决类似问题的不同方式,甚至有助于发现新的生物化学。我们的结果将对有兴趣寻找涉及特定功能的新基因的最终用户很重要。例如,这项工作将指出与环境和工业利益活动相关的新基因,例如与纤维素降解相关的基因群,在生物燃料工业中有用;或者用纤维素生物合成,用于制造可生物降解的物品。研究结果也将影响人工生物系统的设计。例如,我们期望找到现有功能模块的新版本,这将有助于生物系统工程中具有可预测行为的版本的选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MorenoHagelsieb, Gabriel其他文献
MorenoHagelsieb, Gabriel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MorenoHagelsieb, Gabriel', 18)}}的其他基金
Computational prediction of genetic systems in prokaryotes
原核生物遗传系统的计算预测
- 批准号:
RGPIN-2018-06180 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Computational prediction of genetic systems in prokaryotes
原核生物遗传系统的计算预测
- 批准号:
RGPIN-2018-06180 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Computational prediction of genetic systems in prokaryotes
原核生物遗传系统的计算预测
- 批准号:
RGPIN-2018-06180 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Computational prediction of genetic systems in prokaryotes
原核生物遗传系统的计算预测
- 批准号:
RGPIN-2018-06180 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Figuring out genetic functional systems in Prokaryotes through computational genomics and metagenomics
通过计算基因组学和宏基因组学弄清楚原核生物的遗传功能系统
- 批准号:
312480-2012 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Figuring out genetic functional systems in Prokaryotes through computational genomics and metagenomics
通过计算基因组学和宏基因组学弄清楚原核生物的遗传功能系统
- 批准号:
312480-2012 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Figuring out genetic functional systems in Prokaryotes through computational genomics and metagenomics
通过计算基因组学和宏基因组学弄清楚原核生物的遗传功能系统
- 批准号:
312480-2012 - 财政年份:2014
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Figuring out genetic functional systems in Prokaryotes through computational genomics and metagenomics
通过计算基因组学和宏基因组学弄清楚原核生物的遗传功能系统
- 批准号:
312480-2012 - 财政年份:2013
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Figuring out genetic functional systems in Prokaryotes through computational genomics and metagenomics
通过计算基因组学和宏基因组学弄清楚原核生物的遗传功能系统
- 批准号:
312480-2012 - 财政年份:2012
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Functional modules in prokaryotic genomes
原核生物基因组中的功能模块
- 批准号:
312480-2007 - 财政年份:2011
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
- 批准号:51079080
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
非编码RNA与蛋白质相互作用预测算法的研究
- 批准号:31000586
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational Strategies to Tailor Existing Interventions for First Major Depressive Episodes to Inform and Test Personalized Interventions
针对首次严重抑郁发作定制现有干预措施的计算策略,以告知和测试个性化干预措施
- 批准号:
10650695 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
- 批准号:
10660234 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Developing a computational platform for induced-fit and chemogenetic drug design
开发诱导拟合和化学遗传学药物设计的计算平台
- 批准号:
10680745 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Computational approaches to characterize heterogeneity and improve risk stratification in complex disease phenotypes
表征复杂疾病表型异质性并改善风险分层的计算方法
- 批准号:
10805689 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Enabling Rational Design of Drug Targeting Protein-Protein Interactions with Physics-based Computational Modeling
通过基于物理的计算模型合理设计靶向药物的蛋白质-蛋白质相互作用
- 批准号:
10710974 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Computational Methods for Inferring Single-cell DNA Methylation and its Spatial Landscape
推断单细胞 DNA 甲基化及其空间景观的计算方法
- 批准号:
10679088 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Computational approaches to characterize heterogeneity and improve risk stratification in complex disease phenotypes
表征复杂疾病表型异质性并改善风险分层的计算方法
- 批准号:
10448966 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Complementary animal and computational models for biomarker identification in ascending thoracic aortic aneurysm
升主动脉瘤生物标志物识别的补充动物和计算模型
- 批准号:
10503513 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Core B: Statistical and Computational Analysis Core
核心B:统计和计算分析核心
- 批准号:
10698077 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别: