Deep Learning with Little Labelled Data

很少标记数据的深度学习

基本信息

  • 批准号:
    RGPIN-2019-06706
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Machine Learning (ML) is a field of Artificial Intelligence (AI) that aims at providing computers with learning abilities, by inferring models from observations and experience. Many of the recent advances of AI have stemmed from ML, in particular the subfield of Deep Learning (DL). DL aims at learning hierarchical structures, in order to extract features from unstructured raw data (e.g., images, sound, text), allowing significant improvements over the state-of-the-art for many well-studied tasks (e.g., object recognition, automatic translation). However, these techniques are data hungry, requiring huge annotated datasets to be able to efficiently learn how to accomplish some specific tasks. Although such datasets are available for some specific well-established tasks, collecting and annotating sufficiently large datasets for a novel application can be expensive, cost- and time-wise.******We propose a research program investigating various approaches to improve the efficiency of ML and DL for solving problems where only small annotated datasets available. We are looking to build upon other related or satellite datasets having the same kind of data, but whose annotations, if they exist, are not adapted to the task. From it, we would produce a working model for our current task, by learning (or fine-tuning) on the small datasets with the task-related annotations.******The program is organized around four objectives:***1) To investigate how to better learn models by exploiting knowledge extracted from different tasks, which can be reused or adapted to the current context;***2) To improve meta-learning methods that can learn new concepts from only few samples;***3) To develop new approaches to extract better general representations through unsupervised learning;***4) To apply the novel methods to real-world applications, in order to both assess the practicality of the proposed methods and achieve meaningful contributions in the application domain themselves.******Methods investigated within this research program have the potential of making ML and DL usable in a variety of contexts where there are no available big datasets well adapted to the specific task at hand. These ML-based systems will assist humans to adapt quickly to a given task by exploiting similar historical tasks; they will have the capacity for a rapid customization to each user. We are aiming at learning better representations of some modalities (e.g., image, text, speech), usable for a variety of purposes. We will look for discovering mechanisms for AI to adapt to new learning tasks, being able to ramp up performance with only a few examples. Finally, we will apply our techniques to domains such as black-box optimization, super-resolution microscopy, and visual place recognition.**
机器学习(ML)是人工智能(AI)的一个领域,旨在通过从观察和经验中推断模型来为计算机提供学习能力。人工智能的许多最新进展都源于ML,特别是深度学习(DL)的子领域。DL旨在学习分层结构,以便从非结构化原始数据中提取特征(例如,图像、声音、文本),从而允许对许多已充分研究的任务(例如,对象识别、自动翻译)。然而,这些技术需要大量的数据,需要大量的注释数据集才能有效地学习如何完成一些特定的任务。虽然这些数据集可用于某些特定的既定任务,但为新应用程序收集和注释足够大的数据集可能是昂贵的,成本和时间方面的。我们提出了一个研究计划,研究各种方法来提高ML和DL的效率,以解决只有小的注释数据集可用的问题。我们正在寻求建立在其他相关或卫星数据集具有相同类型的数据,但其注释,如果他们存在,是不适合的任务。通过学习(或微调)带有任务相关注释的小数据集,我们将为当前任务生成一个工作模型。******该计划围绕四个目标组织:* 1)研究如何通过利用从不同任务中提取的知识来更好地学习模型,这些知识可以重用或适应当前上下文;* 2)改进元学习方法,可以从很少的样本中学习新概念;* 3)开发新方法,通过无监督学习来提取更好的一般表示;* 4)将新方法应用于实际应用,以评估所提出方法的实用性,并在应用领域本身做出有意义的贡献。该研究计划中研究的方法有可能使ML和DL在各种环境中可用,在这些环境中没有适合手头特定任务的可用大数据集。这些基于ML的系统将通过利用类似的历史任务来帮助人类快速适应给定的任务;它们将具有快速定制每个用户的能力。我们的目标是学习一些模态的更好的表示(例如,图像、文本、语音),可用于各种目的。我们将寻找发现AI适应新学习任务的机制,仅用几个例子就能提高性能。最后,我们将把我们的技术应用于黑盒优化、超分辨率显微镜和视觉位置识别等领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gagné, Christian其他文献

Gagné, Christian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gagné, Christian', 18)}}的其他基金

Deep Learning with Little Labelled Data
很少标记数据的深度学习
  • 批准号:
    RGPIN-2019-06706
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
DRIFTERS: Deep Radar Interpretation For Tracking and Enhancement of Raw Signal
DRIFTERS:用于跟踪和增强原始信号的深度雷达解释
  • 批准号:
    537836-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
Deep Learning with Little Labelled Data
很少标记数据的深度学习
  • 批准号:
    RGPIN-2019-06706
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Deep Learning with Little Labelled Data
很少标记数据的深度学习
  • 批准号:
    RGPIN-2019-06706
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
DRIFTERS: Deep Radar Interpretation For Tracking and Enhancement of Raw Signal
DRIFTERS:用于跟踪和增强原始信号的深度雷达解释
  • 批准号:
    537836-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
DRIFTERS: Deep Radar Interpretation For Tracking and Enhancement of Raw Signal
DRIFTERS:用于跟踪和增强原始信号的深度雷达解释
  • 批准号:
    537836-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
Adaptive Learning Methods for Deeply Embedded Devices
深度嵌入式设备的自适应学习方法
  • 批准号:
    RGPIN-2014-05659
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Learning Methods for Deeply Embedded Devices
深度嵌入式设备的自适应学习方法
  • 批准号:
    RGPIN-2014-05659
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Learning Methods for Deeply Embedded Devices
深度嵌入式设备的自适应学习方法
  • 批准号:
    RGPIN-2014-05659
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized Recommendations for a Social Network of Photographers
为摄影师社交网络提供个性化推荐
  • 批准号:
    492395-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
  • 批准号:
    2337176
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
  • 批准号:
    2337884
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了