Deep Learning with Little Labelled Data

很少标记数据的深度学习

基本信息

  • 批准号:
    RGPIN-2019-06706
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Machine Learning (ML) is a field of Artificial Intelligence (AI) that aims at providing computers with learning abilities, by inferring models from observations and experience. Many of the recent advances of AI have stemmed from ML, in particular the subfield of Deep Learning (DL). DL aims at learning hierarchical structures, in order to extract features from unstructured raw data (e.g., images, sound, text), allowing significant improvements over the state-of-the-art for many well-studied tasks (e.g., object recognition, automatic translation). However, these techniques are data hungry, requiring huge annotated datasets to be able to efficiently learn how to accomplish some specific tasks. Although such datasets are available for some specific well-established tasks, collecting and annotating sufficiently large datasets for a novel application can be expensive, cost- and time-wise. We propose a research program investigating various approaches to improve the efficiency of ML and DL for solving problems where only small annotated datasets available. We are looking to build upon other related or satellite datasets having the same kind of data, but whose annotations, if they exist, are not adapted to the task. From it, we would produce a working model for our current task, by learning (or fine-tuning) on the small datasets with the task-related annotations. The program is organized around four objectives: 1) To investigate how to better learn models by exploiting knowledge extracted from different tasks, which can be reused or adapted to the current context; 2) To improve meta-learning methods that can learn new concepts from only few samples; 3) To develop new approaches to extract better general representations through unsupervised learning; 4) To apply the novel methods to real-world applications, in order to both assess the practicality of the proposed methods and achieve meaningful contributions in the application domain themselves. Methods investigated within this research program have the potential of making ML and DL usable in a variety of contexts where there are no available big datasets well adapted to the specific task at hand. These ML-based systems will assist humans to adapt quickly to a given task by exploiting similar historical tasks; they will have the capacity for a rapid customization to each user. We are aiming at learning better representations of some modalities (e.g., image, text, speech), usable for a variety of purposes. We will look for discovering mechanisms for AI to adapt to new learning tasks, being able to ramp up performance with only a few examples. Finally, we will apply our techniques to domains such as black-box optimization, super-resolution microscopy, and visual place recognition.
机器学习(ML)是人工智能(AI)的一个领域,旨在通过根据观察和经验推断模型来为计算机提供学习能力。人工智能最近的许多进展都源于ML,特别是深度学习(DL)的子领域。DL的目标是学习分层结构,以便从非结构化的原始数据(例如,图像、声音、文本)中提取特征,从而使许多经过充分研究的任务(例如,对象识别、自动翻译)的水平得到显著改进。然而,这些技术需要大量的数据,需要庞大的带注释的数据集才能有效地学习如何完成某些特定的任务。虽然这样的数据集可用于某些特定的已建立的任务,但为新的应用程序收集和注释足够大的数据集可能是昂贵的、成本和时间方面的。我们提出了一个研究计划,研究各种方法来提高ML和DL的效率,以解决只有较小的标注数据集可用的问题。我们希望建立在其他相关或卫星数据集的基础上,这些数据集具有相同类型的数据,但其注释(如果存在)不适用于这项任务。从中,我们将通过学习(或微调)带有与任务相关的注释的小数据集,为当前任务生成一个工作模型。该计划围绕四个目标进行组织:1)研究如何通过利用从不同任务提取的知识来更好地学习模型,这些知识可以重复使用或适应当前上下文;2)改进元学习方法,使其能够仅从少量样本中学习新概念;3)开发新的方法,通过非监督学习提取更好的通用表示;4)将新方法应用于实际应用,以评估所提出方法的实用性,并在应用领域本身取得有意义的贡献。在本研究计划中研究的方法有可能使ML和DL在各种情况下可用,在这些情况下,没有可用的大数据集很好地适应手头的特定任务。这些基于ML的系统将通过利用类似的历史任务来帮助人类快速适应给定的任务;它们将具有为每个用户快速定制的能力。我们的目标是学习一些可用于各种目的的模式(例如,图像、文本、语音)的更好表示。我们将寻找发现机制,让人工智能适应新的学习任务,能够通过几个例子提高性能。最后,我们将把我们的技术应用到黑盒优化、超分辨率显微镜和视觉位置识别等领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gagné, Christian其他文献

Gagné, Christian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gagné, Christian', 18)}}的其他基金

DRIFTERS: Deep Radar Interpretation For Tracking and Enhancement of Raw Signal
DRIFTERS:用于跟踪和增强原始信号的深度雷达解释
  • 批准号:
    537836-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
Deep Learning with Little Labelled Data
很少标记数据的深度学习
  • 批准号:
    RGPIN-2019-06706
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Deep Learning with Little Labelled Data
很少标记数据的深度学习
  • 批准号:
    RGPIN-2019-06706
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
DRIFTERS: Deep Radar Interpretation For Tracking and Enhancement of Raw Signal
DRIFTERS:用于跟踪和增强原始信号的深度雷达解释
  • 批准号:
    537836-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
Deep Learning with Little Labelled Data
很少标记数据的深度学习
  • 批准号:
    RGPIN-2019-06706
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
DRIFTERS: Deep Radar Interpretation For Tracking and Enhancement of Raw Signal
DRIFTERS:用于跟踪和增强原始信号的深度雷达解释
  • 批准号:
    537836-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
Adaptive Learning Methods for Deeply Embedded Devices
深度嵌入式设备的自适应学习方法
  • 批准号:
    RGPIN-2014-05659
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Learning Methods for Deeply Embedded Devices
深度嵌入式设备的自适应学习方法
  • 批准号:
    RGPIN-2014-05659
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Learning Methods for Deeply Embedded Devices
深度嵌入式设备的自适应学习方法
  • 批准号:
    RGPIN-2014-05659
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized Recommendations for a Social Network of Photographers
为摄影师社交网络提供个性化推荐
  • 批准号:
    492395-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative R&D
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
  • 批准号:
    10110118
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    EU-Funded
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Linkage Projects
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
  • 批准号:
    DP240103278
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Projects
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
  • 批准号:
    DE240100201
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Early Career Researcher Award
Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
  • 批准号:
    DE240101089
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Early Career Researcher Award
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
  • 批准号:
    2905946
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Studentship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
  • 批准号:
    EP/X033244/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了