Adaptive Learning Methods for Deeply Embedded Devices

深度嵌入式设备的自适应学习方法

基本信息

  • 批准号:
    RGPIN-2014-05659
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Smartphones have changed our everyday life, but an even greater revolution is at our door. The future will be composed of tiny computing devices deeply embedded in our environment (e.g., houses, vehicles, clothes, roads, workplaces), which will sense and process data, and communicate with other devices and the Cloud. The advances in electronics, sensors, networking, and battery technologies will make it possible to build such devices, while the software technologies supporting this new class of computers is far from ready. Therefore, our research will explore avenues to improve software approaches relevant to this computing platform, by proposing efficient methods for processing the sensed data on the devices while dealing with the limited resources that they provide.Three aspects will be developed in the research. First, methods grounded in artificial intelligence will be investigated to allow an efficient processing of the data sensed by the devices. Let us assume a given object of interest, for which each device has a different view. The approach followed is to process the sensed data locally, on the devices and according to their respective view, before reaching a decision regarding the class of object at the network level. That would involve starting with a general recognition model, which is produced from large databases of object observations, and then specializing the model in an online fashion, according to the context and environment in which each device is operating. As a second aspect, we will develop methods to provide self-managing capabilities to the devices. This should lead to an improvement in the performance of the devices and increase their energy autonomy, all this with little or no human intervention. Our third objective is to establish methodologies to design the software system used on these devices in accordance with their capabilities and duties. For that, we will develop techniques that will explore the different possible trade-offs in the design of the systems. Indeed, with these devices, an increase in processing so as to achieve better performance generally leads to the consumption of more resources, possibly going beyond what is available or significantly reducing their energy autonomy. A better understanding of the impact associated with better sensing performance should allow the system designer to make a more informed decision.This research is necessary to support the exploitation of deeply embedded devices, required for the so-called ambient intelligence paradigm to become a reality. In an ambient intelligence world, the embedded devices are helping people to carry out their everyday activities in an unobtrusive and natural way. These miniature devices will be well integrated in the environment, such that they will disappear from our surroundings, the only visible element being the user interface. The impact of this new computing paradigm on our everyday life will be tremendous in terms of productivity (e.g. automation, resources management, quality of life), safety (e.g. transportation, public security), and health (e.g., disease detection, first response). The technologies developed in this programme should provide Canada with a competitive edge in this domain, creating intellectual property and expertise for developing software that is more robust, capable of adaptation and self-management, which are key qualities to allow computing to move out of the office and enter the real-world.
智能手机改变了我们的日常生活,但一场更大的革命即将到来。未来将由深深嵌入我们环境(例如房屋、车辆、衣服、道路、工作场所)中的微型计算设备组成,这些设备将感知和处理数据,并与其他设备和云进行通信。电子、传感器、网络和电池技术的进步将使制造此类设备成为可能,而支持此类新型计算机的软件技术还远未准备好。因此,我们的研究将探索改进与该计算平台相关的软件方法的途径,提出有效的方法来处理设备上的感测数据,同时处理它们提供的有限资源。研究将发展三个方面。首先,将研究基于人工智能的方法,以有效处理设备感知的数据。让我们假设一个给定的感兴趣对象,每个设备都有不同的视图。遵循的方法是在设备上根据各自的视图在本地处理感测到的数据,然后在网络级别做出有关对象类别的决定。这将涉及从一个通用的识别模型开始,该模型是从对象观察的大型数据库中生成的,然后根据每个设备运行的上下文和环境以在线方式专门化该模型。第二个方面,我们将开发为设备提供自我管理功能的方法。这应该会提高设备的性能并增加其能源自主权,而所有这一切都需要很少或根本不需要人为干预。我们的第三个目标是建立方法论,根据这些设备的功能和职责来设计这些设备上使用的软件系统。为此,我们将开发技术来探索系统设计中不同可能的权衡。事实上,对于这些设备,为了实现更好的性能而增加处理通常会导致消耗更多资源,可能超出可用资源或显着降低其能源自主权。更好地理解与更好的传感性能相关的影响应该使系统设计者能够做出更明智的决定。这项研究对于支持深度嵌入式设备的开发是必要的,而深度嵌入式设备是所谓的环境智能范式成为现实所必需的。在环境智能世界中,嵌入式设备正在帮助人们以不引人注目且自然的方式进行日常活动。这些微型设备将很好地融入环境中,从而从我们的周围环境中消失,唯一可见的元素是用户界面。这种新的计算范式对我们日常生活的影响将在生产力(例如自动化、资源管理、生活质量)、安全(例如交通、公共安全)和健康(例如疾病检测、第一响应)方面产生巨大影响。该计划开发的技术应该为加拿大在这一领域提供竞争优势,为开发更强大、能够适应和自我管理的软件创造知识产权和专业知识,这是让计算走出办公室进入现实世界的关键品质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gagné, Christian其他文献

Gagné, Christian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gagné, Christian', 18)}}的其他基金

Deep Learning with Little Labelled Data
很少标记数据的深度学习
  • 批准号:
    RGPIN-2019-06706
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
DRIFTERS: Deep Radar Interpretation For Tracking and Enhancement of Raw Signal
DRIFTERS:用于跟踪和增强原始信号的深度雷达解释
  • 批准号:
    537836-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Deep Learning with Little Labelled Data
很少标记数据的深度学习
  • 批准号:
    RGPIN-2019-06706
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Deep Learning with Little Labelled Data
很少标记数据的深度学习
  • 批准号:
    RGPIN-2019-06706
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
DRIFTERS: Deep Radar Interpretation For Tracking and Enhancement of Raw Signal
DRIFTERS:用于跟踪和增强原始信号的深度雷达解释
  • 批准号:
    537836-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Deep Learning with Little Labelled Data
很少标记数据的深度学习
  • 批准号:
    RGPIN-2019-06706
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
DRIFTERS: Deep Radar Interpretation For Tracking and Enhancement of Raw Signal
DRIFTERS:用于跟踪和增强原始信号的深度雷达解释
  • 批准号:
    537836-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Adaptive Learning Methods for Deeply Embedded Devices
深度嵌入式设备的自适应学习方法
  • 批准号:
    RGPIN-2014-05659
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Learning Methods for Deeply Embedded Devices
深度嵌入式设备的自适应学习方法
  • 批准号:
    RGPIN-2014-05659
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized Recommendations for a Social Network of Photographers
为摄影师社交网络提供个性化推荐
  • 批准号:
    492395-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mixed-Methods Evaluation of Mobile Health Adaptive Learning Training for Pediatric Healthcare Workers in Tanzania
坦桑尼亚儿科医护人员移动健康适应性学习培训的混合方法评估
  • 批准号:
    10863717
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
Condensation and Prediction Acceleration for Deep Learning Through Low-rank Regularization and Adaptive Proximal Methods
通过低秩正则化和自适应近端方法进行深度学习的压缩和预测加速
  • 批准号:
    23K19981
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Adaptive and Robust Methods in Statistical Machine Learning
统计机器学习中的自适应和鲁棒方法
  • 批准号:
    2748915
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Studentship
Mixed-Methods Evaluation of Mobile Health Adaptive Learning Training for Pediatric Healthcare Workers in Tanzania
坦桑尼亚儿科医护人员移动健康适应性学习培训的混合方法评估
  • 批准号:
    10538413
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
Self-adaptive and machine learning methods for two-dimensional stochastically perturbed shallow water equations
二维随机扰动浅水方程的自适应和机器学习方法
  • 批准号:
    2732303
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Studentship
Machine learning methods for adaptive process planning of 5-axis milling
5轴铣削自适应工艺规划的机器学习方法
  • 批准号:
    424298653
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Research Grants
Self-adaptive and machine learning methods for two-dimensional stochastically perturbed shallow water equations"
二维随机扰动浅水方程的自适应和机器学习方法"
  • 批准号:
    2300448
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Studentship
Adaptive Learning Methods for Deeply Embedded Devices
深度嵌入式设备的自适应学习方法
  • 批准号:
    RGPIN-2014-05659
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Estimating the Difficulty of Source Code by Stepwise Quantification of Descriptive Knowledge and Estimating Adaptive Learning Task Presentation Methods
通过逐步量化描述性知识来估计源代码的难度并估计自适应学习任务呈现方法
  • 批准号:
    17K01164
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptive Learning Methods for Deeply Embedded Devices
深度嵌入式设备的自适应学习方法
  • 批准号:
    RGPIN-2014-05659
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了