Machine learning-based quantitative image, tissue, and clinical data analysis for lesion detection and characterization on prostate cancer imaging

基于机器学习的定量图像、组织和临床数据分析,用于前列腺癌成像的病变检测和表征

基本信息

  • 批准号:
    RGPIN-2019-06756
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Prostate cancer is often treated by whole-prostate radiation treatment or surgery, with side effects including erectile dysfunction and urinary incontinence. However, not all men need such invasive treatment; some prostate cancers are sufficiently slow-growing to never need treatment, and some are concentrated in one spot and treatment can be targeted to the tumours only. One of the major problems in prostate cancer is how to determine the right treatment for each man. This is currently done using a blood test and a needle biopsy. Because the blood test has limited accuracy and the small biopsy needles may miss tumours, physicians need to select treatments using incomplete information. To solve this problem, this research proposes three-dimensional (3D) magnetic resonance imaging (MRI) and positron emission tomography (PET) to completely map the prostate. A new form of PET imaging, called prostate specific membrane antigen (PSMA) PET imaging, is showing tremendous promise in its ability to help physicians detect cancer within the prostate. Although MRI and PSMA PET are the best imaging technologies for prostate imaging, seeing prostate tumours on MRI can still be extremely for the physician difficult because of the complexity of the images, and there are no current guidelines for physicians to follow in interpreting PSMA PET images of the prostate. We propose the development of an artificially intelligent computer system to help doctors to translate the complex images into a simple 3D cancer map that will enable guiding of biopsies to targets and choosing the right treatment for each patient. This system will be based on artificial neural networks, which are software programs that mimic aspects of the visual systems in human brains. A new type of artificial neural network with a “deep learning” architecture has shown tremendous promise in machine vision tasks for everyday objects; for instance, many mobile phone cameras use deep learning for face recognition. We will, for the first time, develop a deep learning-based artificial intelligence system that will integrate mpMRI and PSMA PET images with all of the clinical parameters (e.g. blood test results) that the physician would use to assist in cancer detection. In addition, we will form a more robust interface between the physician and the machine by eye tracking technology to get a window into the physician's mind. Eye gaze locations suggest regions of suspicion or uncertainty, and the deep learning system will exploit these eye gaze data to sharpen its assessment of image regions where the physician's attention dwells. This will result in a hybrid human-machine vision system drawing on the combined strengths of human and artificial intelligence to finally develop an inexpensive software tool that will avoid overtreatment of prostate cancer in men for whom this would compromise quality life with no added benefit, and detect aggressive prostate cancer early while it is still curable.
前列腺癌通常采用全前列腺放射治疗或手术治疗,副作用包括勃起功能障碍和尿失禁。然而,并不是所有的男性都需要这种侵入性治疗;一些前列腺癌生长非常缓慢,永远不需要治疗,有些前列腺癌集中在一个部位,治疗只能针对肿瘤。前列腺癌的主要问题之一是如何为每个人确定正确的治疗方法。目前,这是通过血液测试和针吸活组织检查完成的。由于血液检测的准确性有限,而且细小的活检针可能会漏掉肿瘤,医生需要使用不完整的信息来选择治疗方法。为了解决这一问题,本研究提出了三维(3D)磁共振成像(MRI)和正电子发射断层扫描(PET)来完整地绘制前列腺。一种名为前列腺特异性膜抗原(PSMA)PET成像的新形式的PET成像在帮助医生检测前列腺癌方面显示出巨大的前景。虽然MRI和PSMA PET是最好的前列腺成像技术,但由于图像的复杂性,在MRI上看到前列腺肿瘤对医生来说仍然是非常困难的,而且目前还没有医生在解释PSMA PET前列腺图像时可以遵循的指南。我们建议开发一种人工智能计算机系统,以帮助医生将复杂的图像转换为简单的3D癌症地图,从而能够将活检引导到目标位置,并为每个患者选择正确的治疗方法。该系统将基于人工神经网络,人工神经网络是模仿人脑视觉系统的软件程序。一种具有深度学习结构的新型人工神经网络在日常物体的机器视觉任务中显示出巨大的前景;例如,许多手机摄像头使用深度学习进行人脸识别。我们将首次开发一个基于深度学习的人工智能系统,将mpMRI和PSMA PET图像与所有临床参数(例如血液测试结果)集成在一起,医生将使用这些参数来辅助癌症检测。此外,我们将通过眼球跟踪技术在医生和机器之间形成更强大的界面,以了解医生的大脑。眼睛凝视的位置暗示着怀疑或不确定的区域,深度学习系统将利用这些眼睛凝视数据来加强对医生注意力所在图像区域的评估。这将导致一种混合的人机视觉系统,利用人类和人工智能的组合优势,最终开发一种廉价的软件工具,以避免过度治疗前列腺癌的男性,这将损害男性的生活质量,而不会带来额外的好处,并在侵袭性前列腺癌仍可治愈的情况下及早发现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ward, Aaron其他文献

Determination of the Association Between T2-weighted MRI and Gleason Sub-pattern: A Proof of Principle Study
  • DOI:
    10.1016/j.acra.2016.07.013
  • 发表时间:
    2016-11-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Downes, Michelle R.;Gibson, Eli;Ward, Aaron
  • 通讯作者:
    Ward, Aaron
[18F]-DCFPyL Positron Emission Tomography/Magnetic Resonance Imaging for Localization of Dominant Intraprostatic Foci: First Experience
  • DOI:
    10.1016/j.euf.2016.10.002
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Bauman, Glenn;Martin, Peter;Ward, Aaron
  • 通讯作者:
    Ward, Aaron

Ward, Aaron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ward, Aaron', 18)}}的其他基金

Machine learning-based quantitative image, tissue, and clinical data analysis for lesion detection and characterization on prostate cancer imaging
基于机器学习的定量图像、组织和临床数据分析,用于前列腺癌成像的病变检测和表征
  • 批准号:
    RGPIN-2019-06756
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning-based quantitative image, tissue, and clinical data analysis for lesion detection and characterization on prostate cancer imaging
基于机器学习的定量图像、组织和临床数据分析,用于前列腺癌成像的病变检测和表征
  • 批准号:
    RGPIN-2019-06756
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning-based quantitative image, tissue, and clinical data analysis for lesion detection and characterization on prostate cancer imaging
基于机器学习的定量图像、组织和临床数据分析,用于前列腺癌成像的病变检测和表征
  • 批准号:
    RGPIN-2019-06756
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative 3D digital pathology image analysis for tissue characterization on prostate cancer imaging
用于前列腺癌成像组织表征的定量 3D 数字病理图像分析
  • 批准号:
    418740-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative 3D digital pathology image analysis for tissue characterization on prostate cancer imaging
用于前列腺癌成像组织表征的定量 3D 数字病理图像分析
  • 批准号:
    418740-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative 3D digital pathology image analysis for tissue characterization on prostate cancer imaging
用于前列腺癌成像组织表征的定量 3D 数字病理图像分析
  • 批准号:
    418740-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative 3D digital pathology image analysis for tissue characterization on prostate cancer imaging
用于前列腺癌成像组织表征的定量 3D 数字病理图像分析
  • 批准号:
    418740-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative 3D digital pathology image analysis for tissue characterization on prostate cancer imaging
用于前列腺癌成像组织表征的定量 3D 数字病理图像分析
  • 批准号:
    418740-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative 3D digital pathology image analysis for tissue characterization on prostate cancer imaging
用于前列腺癌成像组织表征的定量 3D 数字病理图像分析
  • 批准号:
    418740-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Shape-Enhanced Augmented Reality for Image-Guided Surgery
用于图像引导手术的形状增强增强现实
  • 批准号:
    357859-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Postdoctoral Fellowships

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
  • 批准号:
    31971003
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
  • 批准号:
    61702207
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
  • 批准号:
    24K04111
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
  • 批准号:
    EP/Y021614/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
  • 批准号:
    2332121
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Cooperative Agreement
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
SBIR Phase I: An inclusive machine learning-based digital platform to credential soft skills
SBIR 第一阶段:一个基于机器学习的包容性数字平台,用于认证软技能
  • 批准号:
    2317077
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
  • 批准号:
    EP/Y028252/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Fellowship
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
  • 批准号:
    10100967
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    EU-Funded
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
  • 批准号:
    24K13482
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
  • 批准号:
    2339588
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了