Atomic Efficient Catalytic Technology for Sustainable Chemical and Fuel Syntheses Enabled by Active Site Coupling and Kinetic Property Tuning
通过活性位点耦合和动力学特性调节实现可持续化学和燃料合成的原子效率催化技术
基本信息
- 批准号:RGPIN-2018-06603
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Efficient synthesis of energy carriers and commodity, specialty, and pharmaceutical chemicals from renewable feedstocks is one of the greatest challenges of this century, paving the path towards a sustainable future. The proposed research program will develop fundamental catalytic knowledge required for this synthesis via the design of catalytic sites and reaction environments and, in turn, tuning of rates and selectivities in order to attain the much sought after atomistic efficiencies. The specific research themes are the conversion of light alkanes, selective hydrogenation of aldehydes/ketones, and coupling of light oxygenates from alternative feedstocks (shale gas, biogas, and lignocellulosic biomass). The program will adapt a highly integrated, multidisciplinary approach, combining advanced spectroscopic and microscopic techniques, density functional theory, together with kinetic and isotopic transient methods, to unravel the catalytic events at the molecular scale. Specific focus is on the structural dynamics of active sites upon their contact with complex solvent mixtures and the instantaneous formation of active structures during catalysis under industrially relevant conditions. Our previous work has established the kinetic functions of well-defined metal and Brønsted acid sites and the catalytic requirements for these reactions with great molecular details. We have also identified key kinetic descriptors, i.e., measurable thermodynamic properties, that dictate the fate of the reactants during their catalytic sojourns. In this next phase, we will exploit the mechanistic knowledge and catalytic requirements, in designing complex, hierarchical catalyst structures with multiple types of mono-functional sites, containing them in confined structures and altering their reaction environment with aggregated solvent molecules for atomic efficient catalysis. Such strategies alter the chemical identity and reactivity of the intermediates and, in turn, dictate the ultimate yields. Incorporating into this program is a comprehensive professional development plan, placing strong emphasis on diverse, interdisciplinary trainings across chemical engineering, chemistry, materials science, as well as on critical thinking and leadership competency. The highly qualified personnel trained from this program will acquire strong technical and professional skill sets with broad industrial and global perspective, through strong, synergistic collaborative efforts and the use of world class infrastructure, within Canada as well as in the US. The personnel will work on fundamental problems, directly transferrable to those in industrial catalysis, as such they are much needed in the Canadian energy and chemical industries.
从可再生原料中高效合成能源载体和商品、特种和医药化学品是本世纪最大的挑战之一,为可持续发展的未来铺平了道路。拟议的研究计划将通过催化位点和反应环境的设计开发这种合成所需的基本催化知识,反过来,调整速率和选择性,以达到原子效率。具体的研究主题是轻质烷烃的转化,醛/酮的选择性氢化,以及来自替代原料(页岩气,沼气和木质纤维素生物质)的轻质含氧化合物的偶联。该计划将采用高度集成的多学科方法,结合先进的光谱和显微技术,密度泛函理论,以及动力学和同位素瞬态方法,以解开分子尺度上的催化事件。具体的重点是在与复杂的溶剂混合物接触时,活性位点的结构动力学和在工业相关条件下催化过程中活性结构的瞬时形成。我们以前的工作已经建立了明确的金属和布朗斯特酸中心的动力学函数,以及这些反应的催化要求,具有很大的分子细节。我们还确定了关键的动力学描述符,即,可测量的热力学性质,决定了反应物在其催化逗留期间的命运。在下一阶段,我们将利用机理知识和催化要求,设计具有多种类型单官能位点的复杂、分层催化剂结构,将它们包含在受限结构中,并改变它们与聚集溶剂分子的反应环境,以实现原子高效催化。这些策略改变了中间体的化学特性和反应性,进而决定了最终的产率。加入该计划是一个全面的专业发展计划,重点强调化学工程,化学,材料科学以及批判性思维和领导能力的多元化,跨学科培训。从该计划中培养的高素质人才将获得强大的技术和专业技能,具有广泛的工业和全球视野,通过强大的协同合作努力和使用世界一流的基础设施,在加拿大和美国。这些人员将研究基本问题,直接转移到工业催化领域,因此加拿大能源和化学工业非常需要他们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chin, YaHuei(Cathy)其他文献
Chin, YaHuei(Cathy)的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chin, YaHuei(Cathy)', 18)}}的其他基金
Advanced Catalysis for Sustainable Chemistry
可持续化学的先进催化
- 批准号:
CRC-2020-00064 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Atomic Efficient Catalytic Technology for Sustainable Chemical and Fuel Syntheses Enabled by Active Site Coupling and Kinetic Property Tuning
通过活性位点耦合和动力学特性调节实现可持续化学和燃料合成的原子效率催化技术
- 批准号:
RGPIN-2018-06603 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Advanced Catalysis For Sustainable Chemistry
可持续化学的先进催化
- 批准号:
CRC-2020-00064 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Atomic Efficient Catalytic Technology for Sustainable Chemical and Fuel Syntheses Enabled by Active Site Coupling and Kinetic Property Tuning
通过活性位点耦合和动力学特性调节实现可持续化学和燃料合成的原子效率催化技术
- 批准号:
RGPIN-2018-06603 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Advanced Catalysis for Sustainable Chemistry
可持续化学的先进催化
- 批准号:
1000233128-2019 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Advanced Catalysis for Sustainable Chemistry
可持续化学的先进催化
- 批准号:
1000230918-2015 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Atomic Efficient Catalytic Technology for Sustainable Chemical and Fuel Syntheses Enabled by Active Site Coupling and Kinetic Property Tuning
通过活性位点耦合和动力学特性调节实现可持续化学和燃料合成的原子效率催化技术
- 批准号:
RGPIN-2018-06603 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Development of hydrotreating catalysts for the removal of S and N from heavy crude oils
开发用于从重质原油中脱硫和脱氮的加氢处理催化剂
- 批准号:
476457-2014 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Research and Development Grants
Next generation catalytic aftertreatment technology for exhaust emission control
用于废气排放控制的下一代催化后处理技术
- 批准号:
506855-2017 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Strategic Projects - Group
Advanced Catalysis for Sustainable Chemistry
可持续化学的先进催化
- 批准号:
1000230918-2015 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
相似国自然基金
原子修饰MnO2缺陷位用于高效电催化乳酸选择性氧化制
丙酮酸的研究
- 批准号:2024JJ6307
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
多孔金属氧化物负载单原子催化剂用以纯过氧化氢溶液高效制备
- 批准号:22308050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单原子负离子光催化氧化体系的构建及其高效消除大气VOCs的机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
微波高效合成Co单原子并用于电催化合成氨研究
- 批准号:22308189
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
单原子位点耦合活性载体高效电催化木质素C-O和C-C键精准活化和选择转化
- 批准号:22379023
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向高效分解水制氢的TiO2-非贵金属单原子光催化剂的原位构筑及协同作用机制
- 批准号:22378346
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Ti4O7/NC双基底金属单原子催化剂的可控制备及其燃料电池高效应用研究
- 批准号:22371022
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高效金属单原子-纳米颗粒协同加氢催化体系的精准合成及其协同机制研究
- 批准号:22372190
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
贵金属单原子催化剂高效氧化典型行业VOCs及耐硫再生机制研究
- 批准号:22306008
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
高效类固氮酶单原子位点光催化剂的结构调控
- 批准号:22372082
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
3-D Printed Catalytic Monoliths for Energy Efficient Carbon Conversion
用于节能碳转化的 3D 打印催化整体材料
- 批准号:
LP210301332 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Linkage Projects
CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
职业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
- 批准号:
2331082 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
Tandem Catalysts Design towards Efficient Selective Catalytic Oxidation of ammonia (TCatSCO)
氨的高效选择性催化氧化 (TCatSCO) 串联催化剂设计
- 批准号:
EP/X022986/2 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Fellowship
Tandem Catalysts Design towards Efficient Selective Catalytic Oxidation of ammonia (TCatSCO)
氨的高效选择性催化氧化 (TCatSCO) 串联催化剂设计
- 批准号:
EP/X022986/1 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Fellowship
CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
事业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
- 批准号:
2145128 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
RGPIN-2018-04727 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Atomic Efficient Catalytic Technology for Sustainable Chemical and Fuel Syntheses Enabled by Active Site Coupling and Kinetic Property Tuning
通过活性位点耦合和动力学特性调节实现可持续化学和燃料合成的原子效率催化技术
- 批准号:
RGPIN-2018-06603 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Development of highly efficient catalytic systems based on structural control of manganese oxides by crystallization of precursors
开发基于通过前体结晶控制锰氧化物结构的高效催化系统
- 批准号:
21H01713 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
- 批准号:
RGPIN-2018-04727 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Atomic Efficient Catalytic Technology for Sustainable Chemical and Fuel Syntheses Enabled by Active Site Coupling and Kinetic Property Tuning
通过活性位点耦合和动力学特性调节实现可持续化学和燃料合成的原子效率催化技术
- 批准号:
RGPIN-2018-06603 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual