Machine learning based optimization for database workloads
基于机器学习的数据库工作负载优化
基本信息
- 批准号:543957-2019
- 负责人:
- 金额:$ 4.95万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to investigate machine learning and self-optimization algorithms for database workloads. The focus is on techniques that can enable run-time adaptive reconfiguration through workload classification, performance prediction and resource planning and execution. Current state-of-the-art approaches adopted in the industry reside on a number of static memory models implemented for each sort of consuming query operator in the access plan (e.g. sort, hash join, etc.). Each model is provided with different inputs depending on the operator type (e.g. cardinality, number of columns, column widths, and various other statistics) and computes an estimate of the memory that would be used by the operator. While these models were built with an understanding of runtime behavior, they are static models, not sufficiently accurate and not enabled for self-tuning and self-optimization. As a result, when runtime implementation of an operator or the operating environment changes, then the models become outdated. In contrast to existing approaches, this project looks at a broad spectrum of deep learning models for prediction and at adaptive look-ahead optimization to account for accurate, cost-effective runtime decisions. The first goal of the project is to develop and test new machine learning models for database workload estimation. The second complementary goal is to develop new model based self-optimization algorithms for memory, computing and storage allocation. The research will generate knowledge and innovation that yield (i) better system utilization and less cost and (ii) better system performance and stability. At the same time, the project will prepare a new generation of researchers and developers, trained in machine learning, database systems and cloud computing.The partner in the project is IBM Canada Lab and IBM Centre for Advanced Studies.
该项目旨在研究数据库工作负载的机器学习和自优化算法。重点是技术,可以使运行时自适应重新配置,通过工作负载分类,性能预测和资源规划和执行。目前业界采用的最先进的方法依赖于为访问计划中的每种消费查询运算符(例如,排序、散列连接等)实现的多个静态存储器模型。每个模型根据运算符类型(例如基数、列数、列宽和各种其他统计数据)提供不同的输入,并计算运算符将使用的内存的估计值。虽然这些模型是在理解运行时行为的基础上构建的,但它们是静态模型,不够准确,也不能进行自调优和自优化。因此,当操作符的运行时实现或操作环境发生变化时,模型就会过时。与现有方法相比,该项目着眼于广泛的深度学习预测模型和自适应前瞻优化,以实现准确,经济高效的运行时决策。该项目的第一个目标是开发和测试用于数据库工作负载估计的新机器学习模型。第二个互补的目标是开发新的模型为基础的自优化算法的内存,计算和存储分配。该研究将产生知识和创新,产生(i)更好的系统利用率和更低的成本,(ii)更好的系统性能和稳定性。与此同时,该项目将培养新一代的研究人员和开发人员,在机器学习,数据库系统和云计算方面进行培训。该项目的合作伙伴是IBM加拿大实验室和IBM高级研究中心。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Litoiu, Marin其他文献
Litoiu, Marin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Litoiu, Marin', 18)}}的其他基金
Software Engineering for Internet of Things
物联网软件工程
- 批准号:
RGPIN-2018-05888 - 财政年份:2022
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Software Engineering for Internet of Things
物联网软件工程
- 批准号:
RGPIN-2018-05888 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Dependable Internet-of-Things Applications (DITA)
可靠的物联网应用程序 (DITA)
- 批准号:
510284-2018 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research and Training Experience
Machine learning based optimization for database workloads
基于机器学习的数据库工作负载优化
- 批准号:
543957-2019 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research and Development Grants
Dependable Internet-of-Things Applications (DITA)
可靠的物联网应用程序 (DITA)
- 批准号:
510284-2018 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research and Training Experience
Machine learning based optimization for database workloads
基于机器学习的数据库工作负载优化
- 批准号:
543957-2019 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research and Development Grants
Software Engineering for Internet of Things
物联网软件工程
- 批准号:
RGPIN-2018-05888 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Multi goal self-adaptation for micro-service platforms
微服务平台多目标自适应
- 批准号:
492307-2016 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research and Development Grants
Dependable Internet-of-Things Applications (DITA)
可靠的物联网应用程序 (DITA)
- 批准号:
510284-2018 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research and Training Experience
Software Engineering for Internet of Things
物联网软件工程
- 批准号:
RGPIN-2018-05888 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 4.95万 - 项目类别:
Continuing Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 4.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 4.95万 - 项目类别:
Research Grant
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 4.95万 - 项目类别:
Cooperative Agreement
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
$ 4.95万 - 项目类别:
Research Grant
SBIR Phase I: An inclusive machine learning-based digital platform to credential soft skills
SBIR 第一阶段:一个基于机器学习的包容性数字平台,用于认证软技能
- 批准号:
2317077 - 财政年份:2024
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
- 批准号:
EP/Y028252/1 - 财政年份:2024
- 资助金额:
$ 4.95万 - 项目类别:
Fellowship
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
- 批准号:
10100967 - 财政年份:2024
- 资助金额:
$ 4.95万 - 项目类别:
EU-Funded
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
- 批准号:
24K13482 - 财政年份:2024
- 资助金额:
$ 4.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
- 批准号:
2339588 - 财政年份:2024
- 资助金额:
$ 4.95万 - 项目类别:
Continuing Grant