Physical vapour deposition of ferroelectric and multiferroic tunnel junctions

铁电和多铁隧道结的物理气相沉积

基本信息

项目摘要

Ferroelectric tunnel junctions (FTJs) are the strongest contender to replace flash memory in integrated computer circuitry as they combine low-cost, non-volatility, small footprint, fast read- write cycles, low energy consumption, non-destructive readout and, since very recently, cmos-compatibility. The principle of operation is based on resistive switching between two conductive states that, in the case of FTJs are provided through the distinct state of spontaneous polarization. Intrinsically only a few unit cells thick, they are also suited for integration in crossbar arrays to combine features of memory and logic thus enabling innovative circuit architectures with tremendous potential for energy savings during processor operation. We have very recently demonstrated FTJs with proven CMOS compatibility, using only materials, HfZrO2, that are already part of cmos processing and keeping all process parameters, in particular the deposition temperature, within tolerances. With the proof of concept submitted for patent in collaboration with the industrial partner, the further development of these electronic functions relies for one on the optimization of process parameters for RF magnetron sputtering, a process to be readily adopted from laboratory to fabrication scale. For the other, parasitic switching effects, such as filamentary-mediated resistive switching need to be excluded and the most common failure mechanisms, e.g. point defects, will have to be identified. For this purpose, we collaborate with the electron microscopy and spectroscopy (PEEM) beam line at the Canadian Light Source, Canada's most advanced infrastructure for nanoscale chemical and structural imaging. In order to determine the full potential of these electronic tiles for given specifications (mainly the resistance ratio between on and off state), we collaborate with the NSERC/IBM Canadian industrial research chair to guide the integration towards the most promising circuit architecture. The main objective of this partnership is to develop an industrial main-frame compatible process for a novel non-volatile memory generation to outperform flash in terms of write speed, energy consumption and endurance.
铁电隧道结(FTJ)是替代集成计算机电路中的闪存的最强有力的竞争者,因为它们联合收割机低成本、非易失性、小占地面积、快速读写周期、低能耗、非破坏性读出以及最近的CMOS兼容性。工作原理基于两种导电状态之间的电阻切换,在FTJ的情况下,通过不同的自发极化状态提供电阻切换。内部只有几个单位单元厚,它们也适合于集成在交叉阵列中,以联合收割机的存储器和逻辑功能,从而使创新的电路架构具有巨大的潜力,在处理器操作期间节省能源。我们最近展示了具有CMOS兼容性的FTJ,仅使用已经成为CMOS工艺一部分的HfZrO 2材料,并将所有工艺参数(特别是沉积温度)保持在公差范围内。通过与工业合作伙伴合作提交的专利概念验证,这些电子功能的进一步开发依赖于RF磁控溅射工艺参数的优化,该工艺易于从实验室到制造规模采用。另一方面,寄生开关效应,如介导电阻开关需要被排除在外,最常见的故障机制,如点缺陷,将不得不被识别。为此,我们与加拿大光源的电子显微镜和光谱学(PEEM)光束线合作,这是加拿大最先进的纳米级化学和结构成像基础设施。为了确定这些电子瓦片在给定规格(主要是导通和关断状态之间的电阻比)下的全部潜力,我们与NSERC/IBM加拿大工业研究主席合作,以指导最有前途的电路架构的集成。此次合作的主要目标是开发一种工业主机兼容工艺,用于新一代非易失性存储器,在写入速度、能耗和耐用性方面优于闪存。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruediger, Andreas其他文献

BiFe1-xCrxO3 Ferroelectric Tunnel Junctions for Neuromorphic Systems
  • DOI:
    10.1021/acsaelm.8b00111
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Kolhatkar, Gitanjali;Mittermeier, Bernhard;Ruediger, Andreas
  • 通讯作者:
    Ruediger, Andreas
Extreme temperature stability of thermally insulating graphene-mesoporous-silicon nanocomposite
  • DOI:
    10.1088/1361-6528/aaac40
  • 发表时间:
    2018-04-06
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Kolhatkar, Gitanjali;Boucherif, Abderraouf;Ruediger, Andreas
  • 通讯作者:
    Ruediger, Andreas
Ferroelectric Fe-Cr Codoped BaTiO3 Nanoparticles for the Photocatalytic Oxidation of Azo Dyes
  • DOI:
    10.1021/acsanm.9b00336
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Amaechi, Ifeanyichukwu C.;Youssef, Azza Hadj;Ruediger, Andreas
  • 通讯作者:
    Ruediger, Andreas
A Complementary Metal Oxide Semiconductor Process-Compatible Ferroelectric Tunnel Junction
  • DOI:
    10.1021/acsami.6b16173
  • 发表时间:
    2017-04-19
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Ambriz-Vargas, Fabian;Kolhatkar, Gitanjali;Ruediger, Andreas
  • 通讯作者:
    Ruediger, Andreas
Dependence of Apertureless Scanning Near-Field Spectroscopy on Nanoscale Refractive Index Changes
  • DOI:
    10.1007/s11468-016-0488-7
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Dab, Chahinez;Kolhatkar, Gitanjali;Ruediger, Andreas
  • 通讯作者:
    Ruediger, Andreas

Ruediger, Andreas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruediger, Andreas', 18)}}的其他基金

Optical near-field study of ferroelectric tunnel junctions
铁电隧道结的光学近场研究
  • 批准号:
    RGPIN-2019-07023
  • 财政年份:
    2022
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a modular roll-2-roll printing system for integrated electronic circuitry
开发用于集成电子电路的模块化卷2卷印刷系统
  • 批准号:
    543965-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants
Optical near-field study of ferroelectric tunnel junctions
铁电隧道结的光学近场研究
  • 批准号:
    RGPIN-2019-07023
  • 财政年份:
    2021
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured targets for the generation of intense and stable THz radiation
用于产生强烈且稳定的太赫兹辐射的纳米结构靶材
  • 批准号:
    529606-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a modular roll-2-roll printing system for integrated electronic circuitry
开发用于集成电子电路的模块化卷2卷印刷系统
  • 批准号:
    543965-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants
Optical near-field study of ferroelectric tunnel junctions
铁电隧道结的光学近场研究
  • 批准号:
    RGPIN-2019-07023
  • 财政年份:
    2020
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Discovery Grants Program - Individual
Optical near-field study of ferroelectric tunnel junctions
铁电隧道结的光学近场研究
  • 批准号:
    RGPIN-2019-07023
  • 财政年份:
    2019
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Discovery Grants Program - Individual
Microwave sintering of ink-jet printed copper nanoparticles
喷墨印刷铜纳米粒子的微波烧结
  • 批准号:
    538444-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants
Nanostructured targets for the generation of intense and stable THz radiation
用于产生强烈且稳定的太赫兹辐射的纳米结构靶材
  • 批准号:
    529606-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a modular roll-2-roll printing system for integrated electronic circuitry
开发用于集成电子电路的模块化卷2卷印刷系统
  • 批准号:
    543965-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Physical vapour deposition
物理气相沉积
  • 批准号:
    519675664
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Major Research Instrumentation
Aerosol assisted chemical vapour deposition (AACVD) of 2D TMDCs for aqueous pollutant degradation
用于降解水污染物的二维 TMDC 气溶胶辅助化学气相沉积 (AACVD)
  • 批准号:
    2885965
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Studentship
Inductively Coupled Plasma Chemical Vapour Deposition (ICP-CVD)
感应耦合等离子体化学气相沉积 (ICP-CVD)
  • 批准号:
    519196594
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Major Research Instrumentation
Scalable, versatile surface engineering through photo-initiated chemical vapour deposition
通过光引发化学气相沉积进行可扩展、多功能的表面工程
  • 批准号:
    RGPIN-2019-05378
  • 财政年份:
    2022
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Discovery Grants Program - Individual
Field Effected Aerosol Assisted Chemical Vapour Deposition (FE-AACVD) of Thin Film Materials
薄膜材料的场效应气溶胶辅助化学气相沉积 (FE-AACVD)
  • 批准号:
    2750078
  • 财政年份:
    2022
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Studentship
Field Effected Aerosol Assisted Chemical Vapour Deposition (FE-AACVD) of Thin Film Materials
薄膜材料的场效应气溶胶辅助化学气相沉积 (FE-AACVD)
  • 批准号:
    2736445
  • 财政年份:
    2022
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Studentship
Low-pressure Chemical Vapour Deposition System
低压化学气相沉积系统
  • 批准号:
    450136577
  • 财政年份:
    2021
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Major Research Instrumentation
Scalable, versatile surface engineering through photo-initiated chemical vapour deposition
通过光引发化学气相沉积进行可扩展、多功能的表面工程
  • 批准号:
    RGPIN-2019-05378
  • 财政年份:
    2021
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Discovery Grants Program - Individual
Chemical Vapour Deposition for Advanced Lithium-Ion Battery Materials and Supercapacitors
先进锂离子电池材料和超级电容器的化学气相沉积
  • 批准号:
    2594823
  • 财政年份:
    2021
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Studentship
Scalable, versatile surface engineering through photo-initiated chemical vapour deposition
通过光引发化学气相沉积进行可扩展、多功能的表面工程
  • 批准号:
    RGPAS-2019-00116
  • 财政年份:
    2020
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了