Brain-inspired visually guided grasping system
类脑视觉引导抓取系统
基本信息
- 批准号:519891-2017
- 负责人:
- 金额:$ 2.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of advanced robotics is expected to grow dramatically over the next decade, primarily by expanding from highly predictable factory settings to unstructured and novel situations. A key challenge in this area is enabling robots to reliably manipulate unfamiliar objects. The project goal is to develop an advanced grasping system that can sense the shape of an object, and position a robotic gripper appropriately to reliably grasp the object. This process is rapid and effortless for humans, but it has been difficult to achieve in robotics. In conventional robotic grasping, a human programs the exact movements that the robot performs. This is only useful in scenarios such as assembly lines, where it is known in advance exactly what shapes objects have, and where they will be at what time. Less-controlled environments require robots to make such determinations and choose appropriate grasp parameters automatically. The project will begin by adapting an existing state-of-the-art deep-learning system that has shown promise recently for automatic grasping (in somewhat restricted scenarios), to produce a working end-to-end system in the first six months. The system will then be extended to make more intelligent decisions about the applied grip force. In the second year, two new variations of the system will be developed and tested, with the goal of allowing the robot to approach objects from a wider variety of angles. This will allow better-quality grasps, as well as grasping for a wider variety of purposes. Finally, inspired by certain parallels between deep networks and the brain, we will systematically compare network activity in each of our networks to activity in the grasping-related areas of the monkey brain, using recent studies in the neuroscience literature. Finally, the third year of the project will develop an iteration of the system that incorporates lessons learned from the performance of earlier networks and comparisons with the primate brain. The resulting system will become a key product of Applied Brain Research. More broadly, it will contribute advanced technology to the Canadian robotics sector, and provide valuable training for HQP in this rapidly growing area.
预计未来十年,先进机器人领域将大幅增长,主要是从高度可预测的工厂环境扩展到非结构化和新颖的情况。该领域的一个关键挑战是使机器人能够可靠地操纵不熟悉的物体。该项目的目标是开发一种先进的抓取系统,可以感知物体的形状,并适当地定位机器人夹具,以可靠地抓取物体。这个过程对人类来说是快速而轻松的,但在机器人技术中却很难实现。在传统的机器人抓取中,人类对机器人执行的精确运动进行编程。这仅在装配线等场景中有用,在这些场景中,可以提前准确地知道对象具有什么形状以及它们在什么时间将在哪里。较少控制的环境要求机器人做出这样的决定,并自动选择适当的抓取参数。该项目将开始通过调整现有的最先进的深度学习系统,该系统最近显示出自动抓取的前景(在某种程度上受到限制的情况下),以在前六个月内产生一个工作的端到端系统。然后,该系统将被扩展,以做出关于所施加的抓握力的更智能的决定。在第二年,将开发和测试该系统的两个新版本,目标是允许机器人从更广泛的角度接近物体。这将允许更好质量的抓握,以及用于更广泛目的的抓握。最后,受深层网络和大脑之间某些相似之处的启发,我们将利用神经科学文献中的最新研究,系统地比较我们每个网络中的网络活动与猴子大脑中与抓握相关区域的活动。最后,该项目的第三年将开发一个系统的迭代,其中包括从早期网络的性能中吸取的经验教训以及与灵长类动物大脑的比较。由此产生的系统将成为应用大脑研究的关键产品。更广泛地说,它将为加拿大机器人行业贡献先进技术,并为HQP在这一快速发展的领域提供宝贵的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tripp, Bryan其他文献
Approximating the Architecture of Visual Cortex in a Convolutional Network
- DOI:
10.1162/neco_a_01211 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:2.9
- 作者:
Tripp, Bryan - 通讯作者:
Tripp, Bryan
Neural populations can induce reliable postsynaptic currents without observable spike rate changes or precise spike timing
- DOI:
10.1093/cercor/bhl092 - 发表时间:
2007-08-01 - 期刊:
- 影响因子:3.7
- 作者:
Tripp, Bryan;Eliasmith, Chris - 通讯作者:
Eliasmith, Chris
Tripp, Bryan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tripp, Bryan', 18)}}的其他基金
Framework for benchmarking models of visual cortex function
视觉皮层功能基准模型框架
- 批准号:
RGPIN-2019-05855 - 财政年份:2022
- 资助金额:
$ 2.89万 - 项目类别:
Discovery Grants Program - Individual
Framework for benchmarking models of visual cortex function
视觉皮层功能基准模型框架
- 批准号:
RGPIN-2019-05855 - 财政年份:2021
- 资助金额:
$ 2.89万 - 项目类别:
Discovery Grants Program - Individual
Framework for benchmarking models of visual cortex function
视觉皮层功能基准模型框架
- 批准号:
RGPIN-2019-05855 - 财政年份:2020
- 资助金额:
$ 2.89万 - 项目类别:
Discovery Grants Program - Individual
Brain-inspired visually guided grasping system
类脑视觉引导抓取系统
- 批准号:
519891-2017 - 财政年份:2019
- 资助金额:
$ 2.89万 - 项目类别:
Collaborative Research and Development Grants
Framework for benchmarking models of visual cortex function
视觉皮层功能基准模型框架
- 批准号:
RGPIN-2019-05855 - 财政年份:2019
- 资助金额:
$ 2.89万 - 项目类别:
Discovery Grants Program - Individual
Brain-inspired visually guided grasping system
类脑视觉引导抓取系统
- 批准号:
519891-2017 - 财政年份:2018
- 资助金额:
$ 2.89万 - 项目类别:
Collaborative Research and Development Grants
Dynamic multi-scale modelling of primate visuo-motor systems
灵长类动物视觉运动系统的动态多尺度建模
- 批准号:
418331-2012 - 财政年份:2017
- 资助金额:
$ 2.89万 - 项目类别:
Discovery Grants Program - Individual
Dynamic multi-scale modelling of primate visuo-motor systems
灵长类动物视觉运动系统的动态多尺度建模
- 批准号:
418331-2012 - 财政年份:2016
- 资助金额:
$ 2.89万 - 项目类别:
Discovery Grants Program - Individual
Dynamic multi-scale modelling of primate visuo-motor systems
灵长类动物视觉运动系统的动态多尺度建模
- 批准号:
418331-2012 - 财政年份:2015
- 资助金额:
$ 2.89万 - 项目类别:
Discovery Grants Program - Individual
Dynamic multi-scale modelling of primate visuo-motor systems
灵长类动物视觉运动系统的动态多尺度建模
- 批准号:
418331-2012 - 财政年份:2014
- 资助金额:
$ 2.89万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
- 批准号:51973054
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
- 批准号:
2337540 - 财政年份:2024
- 资助金额:
$ 2.89万 - 项目类别:
Continuing Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 2.89万 - 项目类别:
Standard Grant
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
- 批准号:
10109981 - 财政年份:2024
- 资助金额:
$ 2.89万 - 项目类别:
EU-Funded
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 2.89万 - 项目类别:
Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 2.89万 - 项目类别:
Continuing Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
- 批准号:
2342253 - 财政年份:2024
- 资助金额:
$ 2.89万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 2.89万 - 项目类别:
Standard Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
- 批准号:
24K15089 - 财政年份:2024
- 资助金额:
$ 2.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
- 批准号:
DP240102315 - 财政年份:2024
- 资助金额:
$ 2.89万 - 项目类别:
Discovery Projects
Gecko Inspired Autonomous Fabrication Of Programmable Two-dimensional Quantum Materials
壁虎启发可编程二维量子材料的自主制造
- 批准号:
EP/Y026284/1 - 财政年份:2024
- 资助金额:
$ 2.89万 - 项目类别:
Research Grant