Framework for benchmarking models of visual cortex function

视觉皮层功能基准模型框架

基本信息

  • 批准号:
    RGPIN-2019-05855
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Neurons communicate with each other using brief voltage spikes that cause the release of neurotransmitters. The brain encodes information about a person's surroundings, memories, and plans, as coordinated patterns of spikes that involve many neurons. Spikes have been recorded from the brain for over 50 years, and we know many details about how they correlate with stimulus properties, etc.; however, we have only a rough idea of how these details interact to produce complex behaviour. Computational models are essential for understanding such complex systems. Models have been used in neuroscience for over 100 years, but it has never been possible to develop models that produce sophisticated behaviour. However, with the advent of deep networks, it is now possible to produce increasingly sophisticated behaviour; deep networks appear to be good starting points for producing large-scale models of complex brain function. This research program seeks to develop such models, by beginning with deep networks, iteratively incorporating models of biological mechanisms, and testing whether each mechanism makes the networks' internal representations and behaviour more biologically realistic.  The research will focus particularly on the most fundamental step in this direction, which is developing a rigorous suite of benchmark tests to compare sophisticated models to the  brains of living creatures. This will be done with the mouse brain, because detailed information about the mouse brain is publicly available, and because the small size of the mouse brain will facilitate rapid iteration through different model variations, to clarify which neural mechanisms contribute most to neural information processing. The specific objectives are to 1) develop a data-driven network architecture that allows very specific comparisons between parts of deep networks and the mouse brain; 2) develop a realistic virtual environment to evaluate neural mechanisms in terms of their roles in the life and survival of the mouse; and 3) develop metrics to compare models with complex public datasets of mouse brain activity. This research will allow a systematic and thorough assessment of sophisticated brain models, leading to identification of the neural circuit properties that most strongly account for spike patterns and behaviour. The results of this work in the mouse will provide important hints about the function of the human brain, which can then be tested and refined in more complex models. The research will contribute to a more precise understanding of human cognition, which may enable new quantitative approaches to a wide range of problems in psychology, neurology, and education. The research will also systematically identify useful mechanisms for advanced artificial intelligence. HQP trained as part of this research program will be uniquely positioned for future careers in neuroscience and advanced artificial intelligence.
神经元通过短暂的电压尖峰相互交流,从而释放神经递质。大脑将有关一个人的周围环境、记忆和计划的信息编码为涉及许多神经元的协调尖峰模式。从大脑中记录尖峰信号已经有50多年的历史了,我们知道许多关于它们如何与刺激特性等相关的细节;然而,我们对这些细节如何相互作用产生复杂行为只有一个粗略的概念。 计算模型对于理解这种复杂系统至关重要。模型已经在神经科学中使用了100多年,但从来没有可能开发出产生复杂行为的模型。然而,随着深度网络的出现,现在可以产生越来越复杂的行为;深度网络似乎是产生复杂大脑功能的大规模模型的良好起点。该研究计划旨在开发这样的模型,从深度网络开始,迭代地结合生物机制的模型,并测试每种机制是否使网络的内部表征和行为更具生物现实性。研究将特别关注这个方向上最基本的一步,该公司正在开发一套严格的基准测试,以将复杂的模型与生物的大脑进行比较。这将用小鼠大脑来完成,因为关于小鼠大脑的详细信息是公开的,并且因为小鼠大脑的小尺寸将有助于通过不同的模型变体进行快速迭代,以澄清哪些神经机制对神经信息处理贡献最大。 具体目标是:1)开发一个数据驱动的网络架构,允许在深度网络和小鼠大脑之间进行非常具体的比较; 2)开发一个逼真的虚拟环境,以评估神经机制在小鼠生活和生存中的作用; 3)开发指标,将模型与小鼠大脑活动的复杂公共数据集进行比较。这项研究将允许对复杂的大脑模型进行系统和彻底的评估,从而识别出最能解释尖峰模式和行为的神经回路特性。 在小鼠中的这项工作的结果将提供有关人类大脑功能的重要提示,然后可以在更复杂的模型中进行测试和改进。这项研究将有助于更准确地理解人类认知,这可能会使新的定量方法在心理学,神经学和教育的广泛问题。该研究还将系统地确定先进人工智能的有用机制。作为该研究计划的一部分,HQP将在神经科学和先进人工智能的未来职业生涯中处于独特的地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tripp, Bryan其他文献

Approximating the Architecture of Visual Cortex in a Convolutional Network
  • DOI:
    10.1162/neco_a_01211
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Tripp, Bryan
  • 通讯作者:
    Tripp, Bryan
Neural populations can induce reliable postsynaptic currents without observable spike rate changes or precise spike timing
  • DOI:
    10.1093/cercor/bhl092
  • 发表时间:
    2007-08-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Tripp, Bryan;Eliasmith, Chris
  • 通讯作者:
    Eliasmith, Chris

Tripp, Bryan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tripp, Bryan', 18)}}的其他基金

Framework for benchmarking models of visual cortex function
视觉皮层功能基准模型框架
  • 批准号:
    RGPIN-2019-05855
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Brain-inspired visually guided grasping system
类脑视觉引导抓取系统
  • 批准号:
    519891-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Collaborative Research and Development Grants
Framework for benchmarking models of visual cortex function
视觉皮层功能基准模型框架
  • 批准号:
    RGPIN-2019-05855
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Brain-inspired visually guided grasping system
类脑视觉引导抓取系统
  • 批准号:
    519891-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Collaborative Research and Development Grants
Framework for benchmarking models of visual cortex function
视觉皮层功能基准模型框架
  • 批准号:
    RGPIN-2019-05855
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Brain-inspired visually guided grasping system
类脑视觉引导抓取系统
  • 批准号:
    519891-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Collaborative Research and Development Grants
Dynamic multi-scale modelling of primate visuo-motor systems
灵长类动物视觉运动系统的动态多尺度建模
  • 批准号:
    418331-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic multi-scale modelling of primate visuo-motor systems
灵长类动物视觉运动系统的动态多尺度建模
  • 批准号:
    418331-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic multi-scale modelling of primate visuo-motor systems
灵长类动物视觉运动系统的动态多尺度建模
  • 批准号:
    418331-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic multi-scale modelling of primate visuo-motor systems
灵长类动物视觉运动系统的动态多尺度建模
  • 批准号:
    418331-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

企业绩效评价的DEA-Benchmarking方法及动态博弈研究
  • 批准号:
    70571028
  • 批准年份:
    2005
  • 资助金额:
    16.5 万元
  • 项目类别:
    面上项目

相似海外基金

Bottom-up, high-throughput prototyping of extracellular vesicle mimetics using cell-free synthetic biology
使用无细胞合成生物学对细胞外囊泡模拟物进行自下而上的高通量原型设计
  • 批准号:
    10638114
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Orthogonal CRISPR GEMMs
正交 CRISPR GEMM
  • 批准号:
    10639698
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Novel approach to identify RNA-bound small molecules in vivo
体内鉴定 RNA 结合小分子的新方法
  • 批准号:
    10646626
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Multicellular Organotypic Mouse Model of Alcoholic Liver Disease
酒精性肝病的多细胞器官型小鼠模型
  • 批准号:
    10667672
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
A suite of conditional mouse models for secretome labeling
一套用于分泌蛋白组标记的条件小鼠模型
  • 批准号:
    10640784
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Integrative modelling of single-cell data to elucidate the genetic architecture of complex disease
单细胞数据的综合建模以阐明复杂疾病的遗传结构
  • 批准号:
    10889304
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Transcriptional Control During Erythropoiesis
红细胞生成过程中的转录控制
  • 批准号:
    10892619
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
ALTERING THE IMMUNE LANDSCAPE TO AUGMENT BONE REGENERATION
改变免疫景观以增强骨再生
  • 批准号:
    10727797
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
  • 批准号:
    10730981
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了