Regime Learning and Prediction on Time-series Data
时间序列数据的机制学习和预测
基本信息
- 批准号:537461-2018
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates regime identification and characterization, and regime switching prediction in time series data, with applications in financial data analysis. A regime corresponds to a dynamic structure such as volatility, trends, patterns, dependence between financial assets. Regime switch analysis aims to detect such structures and their duration, and to forecast whether and how the structure changes from one regime to another. It is a key issue in many fields including climate dynamics, environmental ecology, financial economics, energy, meteorology, medicine, even tourism. As examples, portfolio managers of hedge funds could benefit from understanding the implications of regime switches in a financial ecosystem since the prediction of upcoming structural changes allows them to optimize the investment decisions, i.e. maximizing profits and reducing risks. Understanding regime switches in electricity consumption helps an electricity company forecast loads and manage the production or purchase of electricity.
This project aims to discover cross-sectional market dynamics by investigating a new approach to regime identification and RS prediction. By approaching the problem from a data mining perspective, we will build a novel non-parametric/semi-parametric framework that eases the discovery of dynamics and features in the financial ecosystem. Our approach includes several innovative components. We search for and explore sequential patterns and trajectories in feature spaces to characterize regimes. We assess effects of outliers on regime changes. We search for and explore trajectories at the regime space in order to enable the use of non-linear machine learning models for RS prediction. We seek to identify causality rules and relationships between financial assets and their effectiveness in predicting important financial events, to provide insights on regime formation and duration and to leverage these insights for portfolio management. We design and develop new prediction models by exploring survival analysis, deep learning and pattern features.
本项目研究时间序列数据中的状态识别和表征,以及状态转换预测,以及在金融数据分析中的应用。一种制度对应于一种动态结构,例如金融资产之间的波动性、趋势、模式和相关性。体制转换分析旨在检测这种结构及其持续时间,并预测这种结构是否以及如何从一个体制变化到另一个体制。它是气候动力学、环境生态学、金融经济学、能源、气象、医学甚至旅游等多个领域的一个关键问题。例如,对冲基金的投资组合经理可以从了解金融生态系统中制度转变的影响中受益,因为对即将到来的结构性变化的预测使他们能够优化投资决策,即实现利润最大化和降低风险。了解电力消费中的制度变化有助于电力公司预测负荷和管理电力生产或购买。
这个项目旨在通过研究一种新的制度识别和RS预测方法来发现横截面市场动态。通过从数据挖掘的角度来处理这个问题,我们将构建一个新的非参数/半参数框架,以便于发现金融生态系统中的动态和特征。我们的方法包括几个创新的组成部分。我们在特征空间中搜索和探索序列模式和轨迹来表征政权。我们评估异常值对政权更迭的影响。为了能够使用非线性机器学习模型进行RS预测,我们在区域空间中搜索和探索轨迹。我们试图确定金融资产及其在预测重要金融事件方面的有效性之间的因果关系规则和关系,提供关于制度形成和持续时间的见解,并利用这些见解进行投资组合管理。我们通过探索生存分析、深度学习和模式特征来设计和开发新的预测模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wang, Shengrui其他文献
Temporal and spatial distribution changing characteristics of exogenous pollution load into Dianchi Lake, Southwest of China
- DOI:
10.1007/s12665-015-4721-z - 发表时间:
2015-09-01 - 期刊:
- 影响因子:2.8
- 作者:
Ma, Guangwen;Wang, Shengrui - 通讯作者:
Wang, Shengrui
Release mechanism and kinetic exchange for phosphorus (P) in lake sediment characterized by diffusive gradients in thin films (DGT)
- DOI:
10.1016/j.jhazmat.2017.02.024 - 发表时间:
2017-06-05 - 期刊:
- 影响因子:13.6
- 作者:
Wu, Zhihao;Wang, Shengrui - 通讯作者:
Wang, Shengrui
Effects of dissolved oxygen supply level on phosphorus release from lake sediments
- DOI:
10.1016/j.colsurfa.2007.09.007 - 发表时间:
2008-03-05 - 期刊:
- 影响因子:5.2
- 作者:
Wang, Shengrui;Jin, Xiangcan;Wu, Fengchang - 通讯作者:
Wu, Fengchang
Characteristics of bioavailable organic phosphorus in sediment and its contribution to lake eutrophication in China
- DOI:
10.1016/j.envpol.2016.05.087 - 发表时间:
2016-12-01 - 期刊:
- 影响因子:8.9
- 作者:
Ni, Zhaokui;Wang, Shengrui;Wang, Yuemin - 通讯作者:
Wang, Yuemin
CLUSS2: an alignment-independent algorithm for clustering protein families with multiple biological functions
- DOI:
10.1504/ijcbdd.2008.020190 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:0
- 作者:
Kelil, Abdellali;Wang, Shengrui;Brzezinski, Ryszard - 通讯作者:
Brzezinski, Ryszard
Wang, Shengrui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wang, Shengrui', 18)}}的其他基金
Large-scale Co-evolving Data Mining for Survival Event Prediction
用于生存事件预测的大规模协同进化数据挖掘
- 批准号:
RGPAS-2020-00089 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Large-scale Co-evolving Data Mining for Survival Event Prediction
用于生存事件预测的大规模协同进化数据挖掘
- 批准号:
RGPIN-2020-07110 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Large-scale Co-evolving Data Mining for Survival Event Prediction
用于生存事件预测的大规模协同进化数据挖掘
- 批准号:
RGPIN-2020-07110 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Regime Learning and Prediction on Time-series Data
时间序列数据的机制学习和预测
- 批准号:
537461-2018 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Research and Development Grants
Large-scale Co-evolving Data Mining for Survival Event Prediction
用于生存事件预测的大规模协同进化数据挖掘
- 批准号:
RGPAS-2020-00089 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Large-scale Co-evolving Data Mining for Survival Event Prediction
用于生存事件预测的大规模协同进化数据挖掘
- 批准号:
RGPIN-2020-07110 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Large-scale Co-evolving Data Mining for Survival Event Prediction
用于生存事件预测的大规模协同进化数据挖掘
- 批准号:
RGPAS-2020-00089 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Regime Learning and Prediction on Time-series Data
时间序列数据的机制学习和预测
- 批准号:
537461-2018 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Research and Development Grants
Mining High-Dimensional Event Sequences for Predictive Modelling
挖掘高维事件序列以进行预测建模
- 批准号:
RGPIN-2015-04592 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Time-dependent Survival Neural Networks for Predicting Incoming Workload and Order Turn Around Time in a Radiology Service
用于预测放射服务中的传入工作负载和订单周转时间的时间相关生存神经网络
- 批准号:
543744-2019 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Engage Grants Program
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Research Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
- 批准号:
2341055 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
- 批准号:
24K13482 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probabilistic arrival time prediction algorithm using a-priori knowledge and machine learning to enable sustainable air traffic management
使用先验知识和机器学习的概率到达时间预测算法,以实现可持续的空中交通管理
- 批准号:
24K07723 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deep learning-based prediction model for intraoperative neuromuscular blockade
基于深度学习的术中神经肌肉阻滞预测模型
- 批准号:
23K14406 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Innovative prediction method for for chemical-induced developmental toxicity using causal inference through machine learning.
通过机器学习进行因果推理来预测化学品引起的发育毒性的创新方法。
- 批准号:
23H03555 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Machine Learning Enabled Non-contact Sensing Platform for Blood Pressure and Glucose Prediction
用于血压和血糖预测的机器学习非接触式传感平台
- 批准号:
23K11341 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning applications to sports event prediction and detection of match-fixing in sports betting markets
机器学习在体育赛事预测和体育博彩市场假球检测中的应用
- 批准号:
2894301 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Studentship