Analysis of complex random systems that evolve in space and time

分析在空间和时间上演化的复杂随机系统

基本信息

  • 批准号:
    RGPIN-2017-03856
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

I am a probabilist working on problems based on stochastic processes, using tools from analysis. These problems are motivated by applications in physics or finance, for example the vibration of a string under random perturbations, or the evolution of stock prices in markets which exhibit extreme behaviour. My long-term objective is to develop and implement novel techniques for analyzing the behaviour of systems modelling complex random phenomena. My proposed research program focuses on problems in two distinct areas: (I) stochastic analysis; and (II) heavy-tailed time series. (I) Stochastic partial differential equations (SPDEs) are mathematical objects used for modeling the behaviour of physical phenomena that evolve simultaneously in space and time, and that are subject to random perturbations (noise). Their study requires tools from stochastic analysis (Ito calculus or Malliavin calculus). Fundamental examples are the wave equation and the heat equation. In the classical theory, these equations are perturbed by Gaussian white noise (a space-time generalization of Brownian motion) and have random field solutions only in spatial dimension 1. The goal of my research program is to discover and study new properties of the solutions to the wave and heat equations in higher dimensions, perturbed by more general classes of noise processes, as more flexible alternatives to Gaussian white noise. These results will offer new perspectives on the dynamical interplay between the regularity of the noise and the properties exhibited by the random field solution, leading to a deeper understanding of the effect of the noise on the behaviour of solution. These investigations will constitute significant advances to the theory of SPDEs, offering a solid mathematical justification for certain physical phenomena. (II) Variables with heavy (or regularly varying) tails are encountered frequently in applications in finance, insurance and environmental studies, as models for perturbations that exhibit extreme behaviour. The concept of multivariate regular variation was introduced to describe a similar behaviour in higher dimensions. When we observe processes continuously over a fixed interval of time (or a region in space), we need an infinite-dimensional theory analogous to the theory of multivariate regular variation. In this program, I will advance the asymptotic theory for point processes associated with various time series models with values in an infinite-dimensional space of functions, and will apply this theory for deriving new results about the partial sum or partial maximum of the variables in such series. These results will give important new insights into the extreme value theory for time series models which evolve in time and space, and could be used in a variety applications, such as predicting the moment and location at which the ozone level exceeds a given threshold.
我是一个概率学家,研究基于随机过程的问题,使用分析工具。这些问题是由物理学或金融学的应用程序引起的,例如随机扰动下弦的振动,或者市场中表现出极端行为的股票价格的演变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Balan, Raluca其他文献

Indirect Effects of Parenting Practices on Internalizing Problems among Adolescents: The Role of Expressive Suppression
  • DOI:
    10.1007/s10826-016-0532-4
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Balan, Raluca;Dobrean, Anca;Balazsi, Robert
  • 通讯作者:
    Balazsi, Robert

Balan, Raluca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Balan, Raluca', 18)}}的其他基金

Analysis of complex random systems that evolve in space and time
分析在空间和时间上演化的复杂随机系统
  • 批准号:
    RGPIN-2017-03856
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of complex random systems that evolve in space and time
分析在空间和时间上演化的复杂随机系统
  • 批准号:
    RGPIN-2017-03856
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of complex random systems that evolve in space and time
分析在空间和时间上演化的复杂随机系统
  • 批准号:
    RGPIN-2017-03856
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of complex random systems that evolve in space and time
分析在空间和时间上演化的复杂随机系统
  • 批准号:
    RGPIN-2017-03856
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of complex systems related to fractional random fields
与分数随机场相关的复杂系统分析
  • 批准号:
    263899-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of complex systems related to fractional random fields
与分数随机场相关的复杂系统分析
  • 批准号:
    263899-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of complex systems related to fractional random fields
与分数随机场相关的复杂系统分析
  • 批准号:
    263899-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of complex systems related to fractional random fields
与分数随机场相关的复杂系统分析
  • 批准号:
    263899-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of complex systems related to fractional random fields
与分数随机场相关的复杂系统分析
  • 批准号:
    263899-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Markov process techniques and asymptotics for the analysis of spatial and temporal data
用于空间和时间数据分析的马尔可夫过程技术和渐近法
  • 批准号:
    263899-2006
  • 财政年份:
    2011
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
  • 批准号:
    32370337
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用新型 pH 荧光探针研究 Syntaxin 12/13 介导的多种细胞器互作
  • 批准号:
    92054103
  • 批准年份:
    2020
  • 资助金额:
    87.0 万元
  • 项目类别:
    重大研究计划
S-棕榈酰化新型修饰在细胞自噬中的功能和机制研究
  • 批准号:
    31970693
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
核孔复合体调控细胞核/叶绿体信号交流分子机制的研究
  • 批准号:
    31970656
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
m6A甲基化酶ZCCHC4结合EIF3复合物调节翻译的机制研究
  • 批准号:
    31971330
  • 批准年份:
    2019
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
  • 批准号:
    31971055
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
  • 批准号:
    31872651
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
细胞不对称分裂时PAR-3/PAR-6复合物极性聚集的分子机制研究
  • 批准号:
    31871394
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Complex Analysis and Random Geometry
复杂分析和随机几何
  • 批准号:
    2350481
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Random Field Methods for integrative genomic analysis and high-dimensional risk prediction of congenital heart defects
用于先天性心脏病综合基因组分析和高维风险预测的随机场方法
  • 批准号:
    10905156
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
A web-based platform for robust single-cell analysis, bulk data deconvolution and system-level analysis
基于网络的平台,用于强大的单细胞分析、批量数据反卷积和系统级分析
  • 批准号:
    10766073
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Trans-omic Analysis of Alcohol Consumption and its Relation to Cardiovascular Disease
酒精消耗及其与心血管疾病关系的跨组学分析
  • 批准号:
    10436830
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Analysis of complex random systems that evolve in space and time
分析在空间和时间上演化的复杂随机系统
  • 批准号:
    RGPIN-2017-03856
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Trans-omic Analysis of Alcohol Consumption and its Relation to Cardiovascular Disease
酒精消耗及其与心血管疾病关系的跨组学分析
  • 批准号:
    10616528
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Trans-omic Analysis of Alcohol Consumption and its Relation to Cardiovascular Disease
酒精消耗及其与心血管疾病关系的跨组学分析
  • 批准号:
    10209156
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Machine learning for analysis of walking patterns and physical activity in knee osteoarthritis
机器学习用于分析膝骨关节炎的步行模式和身体活动
  • 批准号:
    10251919
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
Improving Population Representativeness of the Inference from Non-Probability Sample Analysis
提高非概率样本分析推断的总体代表性
  • 批准号:
    10046869
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
Machine learning for analysis of walking patterns and physical activity in knee osteoarthritis
机器学习用于分析膝骨关节炎的步行模式和身体活动
  • 批准号:
    10066579
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了