Frequency-comb-based digital clockwork for next-generation optical clocks

用于下一代光学时钟的基于频率梳的数字时钟装置

基本信息

  • 批准号:
    RGPIN-2016-05882
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

This proposal aims to develop optical clockworks, the systems used to read out the time from an optical clock. An optical clock uses a very stable laser, referenced to an isolated atom's or multiple atoms' transition frequency to provide very fine and accurate subdivisions of time. Its precision comes from the very high frequency of oscillation of light compared to usual radio frequency oscillators, but this also makes it difficult to read the clock because the frequency is too high for conventional electronic means. Since these optical clocks already enable better time measurements and are likely to soon replace radio frequency atomic clock in time and frequency standards, it is very important that we develop the basic technology to support them. Measuring time accurately is a fundamental process, required for a wide range of applications, from answering deep scientific questions about our physical world (searching for gravitational waves, mapping gravity field distortions from the Earth and planets, testing for possible changes in what we now consider physical constants), to enabling very practical applications of accurate global navigation, high efficiency communications systems and many more. Often, the limit to the precision of these scientific and technological endeavours is linked to the performance of its clock. To build a clock, we need a stable, repeatable physical phenomenon (here, the oscillation of the laser electromagnetic field locked to an atomic transition) but also the means to count the number of these oscillations that have occurred. Every optical clock thus requires commensurate optical clockwork to count these oscillations and make the clocks' exquisite accuracy available for applications. Such clockwork is based on a type of laser emitting short pulses called frequency combs. These combs serve as a kind of strobe light for the clock: instead of counting each and every oscillation, combs enable us to very precisely pinpoint one every million oscillations, bringing the counting rate within the range of electronic techniques. Unfortunately these frequency combs are currently not robust and mature enough to operate for long term and outside the controlled environment of the laboratory. This research will use digital signal processing techniques and statistics to analyze, design and control robust frequency comb systems that can operate as reliably and accurately as optical clocks will require in the future.
该提案旨在开发光学钟表,用于从光学时钟中读取时间的系统。 光学时钟使用非常稳定的激光,参考孤立原子或多个原子的跃迁频率,以提供非常精细和准确的时间细分。 与通常的射频振荡器相比,其精度来自非常高的光振荡频率,但这也使得难以读取时钟,因为频率对于传统的电子装置来说太高了。 由于这些光学钟已经能够实现更好的时间测量,并且很可能很快在时间和频率标准中取代射频原子钟,因此我们开发支持它们的基本技术非常重要。 精确测量时间是一个基本的过程,需要广泛的应用,从回答关于我们物理世界的深层次科学问题(寻找引力波,绘制地球和行星的引力场扭曲,测试我们现在认为的物理常数的可能变化),到实现精确的全球导航,高效通信系统等非常实际的应用。 通常,这些科学和技术努力的精度限制与其时钟的性能有关。 为了建造一个时钟,我们需要一个稳定的,可重复的物理现象(这里,激光电磁场的振荡锁定在原子跃迁上),但也需要计算这些振荡次数的方法。 因此,每一个光学时钟都需要相应的光学钟表机构来计算这些振荡,并使时钟的精密精度可用于应用。 这种时钟装置是基于一种称为频率梳的激光发射短脉冲。 这些梳状结构就像是时钟的闪光灯:我们不用计算每一次振荡,而是可以非常精确地确定每百万次振荡中的一次,使计数率在电子技术的范围内。 不幸的是,这些频率梳目前还不够稳健和成熟,无法在实验室的受控环境之外长期运行。 这项研究将使用数字信号处理技术和统计学来分析,设计和控制鲁棒的频率梳系统,这些系统可以像未来的光学时钟一样可靠和准确地工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deschenes, JeanDaniel其他文献

Deschenes, JeanDaniel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deschenes, JeanDaniel', 18)}}的其他基金

Frequency-comb-based digital clockwork for next-generation optical clocks
用于下一代光学时钟的基于频率梳的数字时钟装置
  • 批准号:
    RGPIN-2016-05882
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Frequency Comb-Based Multidimensional Coherent Spectroscopy and Microscopy at the Nanoscale
职业:基于频率梳的纳米级多维相干光谱和显微镜
  • 批准号:
    2235597
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
  • 批准号:
    2326780
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
ASCENT: Using Optical Frequency Comb for Ultrafast Nature-Based Computing for Machine Learning Algorithms
ASCENT:使用光学频率梳进行机器学习算法的超快基于自然的计算
  • 批准号:
    2231036
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Real time and localized analysis of pulse laser fine-machining mechanism based on Raman scattering with optical frequency comb
基于光频梳拉曼散射的脉冲激光精加工机构实时局部分析
  • 批准号:
    19K21919
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
  • 批准号:
    1920742
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Programmable chip-scale quantum photonics platform based on frequency-comb cluster-states for multicasting quantum networks
合作研究:基于频梳簇态的可编程芯片级量子光子平台,用于多播量子网络
  • 批准号:
    1919355
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Frequency-comb-based digital clockwork for next-generation optical clocks
用于下一代光学时钟的基于频率梳的数字时钟装置
  • 批准号:
    RGPIN-2016-05882
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Frequency-comb-based digital clockwork for next-generation optical clocks
用于下一代光学时钟的基于频率梳的数字时钟装置
  • 批准号:
    RGPIN-2016-05882
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Frequency-comb-based digital clockwork for next-generation optical clocks
用于下一代光学时钟的基于频率梳的数字时钟装置
  • 批准号:
    RGPIN-2016-05882
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Development of high-repetition-rate fiber-based frequency comb using a fiber cavity
使用光纤腔开发高重频光纤频率梳
  • 批准号:
    17K14122
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了