Real-time Planning and Optimization under Uncertainty in Logistics and Transportation

物流运输不确定性下的实时规划与优化

基本信息

  • 批准号:
    RGPIN-2017-05224
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Logistics and transportation related operations typically account for large parts of total project costs and are linked to major pollution emission. Both private and public sectors call for more efficiency and reduction of transportation to relieve traffic and pollution emission. While mathematical optimization has been among the most successful tools to provide efficient planning solutions for these domains, models have been traditionally based on forecasts of the problems' parameters. The ongoing increase of information technology capacity to capture and store data from different sources offer an opportunity to the Operations Research community to improve the performance of produced planning solutions in practice. In this research program, I focus on two key applications in logistics and transportation, namely the redeployment in vehicle sharing systems, in particular bike sharing systems and the near-future scenario of autonomous (driver-less) taxis, as well as facility location with mobile facilities that cover customer demands of moving individuals. Those systems have a particularly high potential to relieve the above mentioned issues, as data is often available (e.g. in telecommunication networks). However, they tend to suffer from events that are difficult to forecast (e.g. weather conditions), making a reliable satisfaction of customer demands a constant challenge. I propose to investigate optimization models and solutions methods that provide solutions to realistically sized planning problems by taking into consideration the uncertainty in the (forecast) input data, external data that has typically not been considered in optimization models, as well as real-time information that is released throughout the execution process. We will tackle three main challenges: (i) the problems are combinatorial and, by nature of the applications, have to be solved on large scale and are therefore difficult to solve even when perfect information is available; (ii) the problems are dynamic and decisions have to be adjusted throughout the planning; (iii) the problems' input data is subject to uncertainty. The models and solution methods developed in this research program may have a strong impact in logistics and transportation industries and provide guidance to decision-makers, e.g. by improving telecommunication services, increasing the utility of vehicle sharing systems and reducing traffic and vehicle-ownership. The program advances our understanding of how information uncertainty translates into optimal decisions, of how data from external sources can be useful to improve decision-making, and of the so-far little explored interplay between operations research and machine learning. Students will be trained as the next data scientist generation specialized in prescriptive analytics and will benefit from an excellent job market.
物流和运输相关业务通常占项目总成本的很大一部分,并与主要污染排放有关。私营和公共部门都呼吁提高效率和减少运输,以缓解交通和污染排放。虽然数学优化是为这些领域提供有效规划解决方案的最成功的工具之一,但模型传统上是基于对问题参数的预测。不断增加的信息技术能力,以捕捉和存储来自不同来源的数据提供了一个机会,业务研究界,以提高在实践中产生的规划解决方案的性能。 在这个研究项目中,我专注于物流和运输中的两个关键应用,即车辆共享系统的重新部署,特别是自行车共享系统和自动(无人驾驶)出租车的不久的将来的场景,以及满足移动个人客户需求的移动的设施的设施位置。这些系统在缓解上述问题方面具有特别高的潜力,因为数据通常是可用的(例如在电信网络中)。然而,他们往往会受到难以预测的事件(例如天气状况)的影响,从而使客户需求的可靠满足成为一个持续的挑战。我建议调查的优化模型和解决方案的方法,提供解决方案,以现实规模的规划问题,考虑到(预测)输入数据的不确定性,外部数据,通常没有被认为是在优化模型,以及实时信息,在整个执行过程中发布。我们将应对三个主要挑战:(i)问题是组合的,并且由于应用的性质,必须大规模解决,因此即使有完美的信息也难以解决;(ii)问题是动态的,决策必须在整个规划过程中进行调整;(iii)问题的输入数据具有不确定性。 本研究项目中开发的模型和解决方案可能会对物流和运输行业产生重大影响,并为决策者提供指导,例如通过改善电信服务,提高车辆共享系统的实用性以及减少交通和车辆拥有量。该计划促进了我们对信息不确定性如何转化为最佳决策、来自外部来源的数据如何有助于改善决策以及迄今为止很少探索的运营研究和机器学习之间的相互作用的理解。学生将被培养为下一代数据科学家,专门从事规范分析,并将从优秀的就业市场中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jena, Sanjay其他文献

Jena, Sanjay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jena, Sanjay', 18)}}的其他基金

Real-time Planning and Optimization under Uncertainty in Logistics and Transportation
物流运输不确定性下的实时规划与优化
  • 批准号:
    RGPIN-2017-05224
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time Planning and Optimization under Uncertainty in Logistics and Transportation
物流运输不确定性下的实时规划与优化
  • 批准号:
    RGPIN-2017-05224
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10103131
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    EU-Funded
HoloSurge:Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时引导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10109943
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    EU-Funded
Investigating Information Structures of Robot Motion for Real-time Planning of Humanoid Robots
研究机器人运动的信息结构以进行人形机器人的实时规划
  • 批准号:
    23KJ0889
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: SHF: Chimp: Algorithm-Hardware-Automation Co-Design Exploration of Real-Time Energy-Efficient Motion Planning
职业:SHF:黑猩猩:实时节能运动规划的算法-硬件-自动化协同设计探索
  • 批准号:
    2239945
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
CCRI: Planning-C: Planning to Build Digital Infrastructure for Real-Time, Continual, and Intelligent Transportation Analysis and Management
CCRI:Planning-C:规划构建实时、持续、智能交通分析和管理的数字基础设施
  • 批准号:
    2213731
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Real-time Planning and Optimization under Uncertainty in Logistics and Transportation
物流运输不确定性下的实时规划与优化
  • 批准号:
    RGPIN-2017-05224
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time Temporal Logic-based Planning for Multi-agent Autonomous Systems in Partially-known and Uncertain Environments
部分已知和不确定环境中基于时态逻辑的实时多智能体自治系统规划
  • 批准号:
    RGPIN-2022-03563
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time Temporal Logic-based Planning for Multi-agent Autonomous Systems in Partially-known and Uncertain Environments
部分已知和不确定环境中基于时态逻辑的实时多智能体自治系统规划
  • 批准号:
    DGECR-2022-00092
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Launch Supplement
Real-time Planning and Optimization under Uncertainty in Logistics and Transportation
物流运输不确定性下的实时规划与优化
  • 批准号:
    RGPIN-2017-05224
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Real-Time Motion Planning for Complex Robotic Tasks
复杂机器人任务的实时运动规划
  • 批准号:
    RGPIN-2016-04156
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了