Investigating the theory, operationalization, and practical applications of complex fuzzy logic

研究复杂模糊逻辑的理论、操作化和实际应用

基本信息

  • 批准号:
    RGPIN-2017-05335
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

This proposal requests funding for an ongoing program of research investigating the theoretical foundations, operationalization, and application of Complex Fuzzy Logic (CFL). This area of study has been a primary focus of my research group for over ten years. In the past five years, my students and I have 1) defined and characterized a new set of logical connectives for CFL, incorporating both negation and antonym; 2) developed and characterized a CFL-based machine-learning architecture (ANCFIS) for time series forecasting; and 3) refined the ANCFIS design for faster training and applications in data stream mining. Building on these successes, we now inquire which if any CFL instances, and their operationalizations, lead to better-performing, and more compact and interpretable models for large-scale learning; and what classes of problems are most effectively solved by these new models versus existing ones. Our proposal will support two Ph.D. students and five USRA students who will investigate CFL-based negation and antonym. We will explore the propositional and predicate CFLs that capture both, determining whether they are sound zzy systems and their applications to recommender systems and Internet advertising. We model antonym as a sign reversal of, and negation as orthogonal to, a concept; these are supported by a body of evidence in cognitive psychology and functional MRI studies. Deep networks, however, do not incorporate these mechanisms. There is also virtually no work on deep neural-fuzzy hybrids, nor on explanation mechanisms for deep networks. We are not aware of any work on antonym connectives in classical logics; in fuzzy logic, they are algorithms, not connectives. The proposed research thus explores ground-breaking directions in mathematical logic and deep learning. We will investigate high-value applications of the above developments, guided by our industrial partners. Our CRD grant with HybridForge, Inc. (along with J. Miller, U of A ECE) is focused on recommender engines and click-through-rate predictors. We are preparing funding applications with two more Alberta SMEs: XSENSOR Technologies and Addos Systems (the latter with J. Salmon, U of A ECE) on deep fuzzy systems in inferential sensing and condition monitoring (an M.Sc. and a PDF to be supported, respectively). All of these are commercially valuable products, through which 4 more HQP will be trained - 11 total.
本提案要求资助一项正在进行的研究计划,调查复杂模糊逻辑(CFL)的理论基础,运作和应用。十多年来,这个研究领域一直是我的研究小组的主要焦点。在过去的五年中,我和我的学生们已经定义并描述了一套新的CFL逻辑连接词,包括否定和反义词;2)开发并表征了一种基于cfl的时间序列预测机器学习架构(ANCFIS);3)改进了ANCFIS设计,以实现更快的训练和数据流挖掘中的应用。在这些成功的基础上,我们现在询问是否有CFL实例,以及它们的操作,可以为大规模学习带来更好的性能,更紧凑和可解释的模型;这些新模型与现有模型相比,哪一类问题能最有效地解决?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dick, Scott其他文献

Classifier ensembles for protein structural class prediction with varying homology
Semi-supervised multi-label classification using an extended graph-based manifold regularization.
  • DOI:
    10.1007/s40747-021-00611-7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Li, Ding;Dick, Scott
  • 通讯作者:
    Dick, Scott
On Pythagorean and Complex Fuzzy Set Operations
  • DOI:
    10.1109/tfuzz.2015.2500273
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Dick, Scott;Yager, Ronald R.;Yazdanbakhsh, Omolbanin
  • 通讯作者:
    Yazdanbakhsh, Omolbanin
An investigation of complex fuzzy sets for large-scale learning
  • DOI:
    10.1016/j.fss.2023.108660
  • 发表时间:
    2023-08-16
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Sobhi, Sayedabbas;Dick, Scott
  • 通讯作者:
    Dick, Scott
Detecting Visually Similar Web Pages: Application to Phishing Detection
  • DOI:
    10.1145/1754393.1754394
  • 发表时间:
    2010-05-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Chen, Teh-Chung;Dick, Scott;Miller, James
  • 通讯作者:
    Miller, James

Dick, Scott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dick, Scott', 18)}}的其他基金

Investigating the theory, operationalization, and practical applications of complex fuzzy logic
研究复杂模糊逻辑的理论、操作化和实际应用
  • 批准号:
    RGPIN-2017-05335
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating the theory, operationalization, and practical applications of complex fuzzy logic
研究复杂模糊逻辑的理论、操作化和实际应用
  • 批准号:
    RGPIN-2017-05335
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating the theory, operationalization, and practical applications of complex fuzzy logic
研究复杂模糊逻辑的理论、操作化和实际应用
  • 批准号:
    RGPIN-2017-05335
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent condition monitoring for small induction motors
小型感应电机的智能状态监测
  • 批准号:
    514062-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Grants Program
Investigating the theory, operationalization, and practical applications of complex fuzzy logic
研究复杂模糊逻辑的理论、操作化和实际应用
  • 批准号:
    RGPIN-2017-05335
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Novel developments in computational intelligence with applications to data stream mining
计算智能的新发展及其在数据流挖掘中的应用
  • 批准号:
    262151-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Novel developments in computational intelligence with applications to data stream mining
计算智能的新发展及其在数据流挖掘中的应用
  • 批准号:
    262151-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Novel developments in computational intelligence with applications to data stream mining
计算智能的新发展及其在数据流挖掘中的应用
  • 批准号:
    262151-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Novel developments in computational intelligence with applications to data stream mining
计算智能的新发展及其在数据流挖掘中的应用
  • 批准号:
    262151-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
A recommender system for public library catalogs
公共图书馆目录推荐系统
  • 批准号:
    438317-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
  • 批准号:
    82371997
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
高阶微分方程的周期解及多重性
  • 批准号:
    11501240
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
  • 批准号:
    11301334
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
  • 批准号:
    2349174
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
  • 批准号:
    2401514
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了