Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
基本信息
- 批准号:RGPIN-2018-03966
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multi-modal imaging, where a multitude of imaging techniques are conducted in a single examination, has become an integral and crucial part of the modern healthcare system, as well as a powerful tool leveraged by research scientists to deepen the the understanding of diseases. However, due to the immense quantity as well as complexities of the acquired multi-modal imaging data, along with trade-offs between image quality and image acquisition times, there are significant challenges for clinicians and research scientists to interpret, understand, and analyse the acquired data in a semantically meaningful and efficient fashion. As such, novel methods for computer-aided processing, analysis, and interpretation of this wealth of multi-parametric imaging data can lead to significant improvements in not only disease screening and diagnosis, disease treatment planning and management, but also disease understanding.
The main goal of the proposed research program is to develop novel computational models and intelligent algorithms for multi-modal biomedical image processing, analysis, and interpretation. Four main objectives will be investigated and explored: 1) deep graphical models and methods for improving the reconstruction and enhancement of acquired multi-modal imaging data, 2) novel deep graphical models for better characterizing the complex information captured in the acquired multi-modal imaging data, 3) deep model-driven image analysis for efficient and accurate extraction of quantitative information from a wealth of multi-modal imaging data in an explainable manner, and 4) deep model-driven artificial intelligence methods for efficient, accurate, and explainable computer-aided decision-making.
The scientific and engineering results of the proposed research program will have a significant impact on the health and well-being of Canadians by improving disease screening and diagnosis, disease treatment planning and management, and improving disease understanding by providing new insights into the traits and mechanisms of disease through multi-modal imaging. The scientific knowledge and technologies developed during the proposed research program will be transferred into industry through active collaborations with companies such as Christie Medical, Agfa Healthcare, Hill-Rom Inc., and Elucid Labs. Furthermore, HQP will continue to be trained in image processing and analysis, computer vision, and artificial intelligence within a multi-disciplinary environment, putting them in a strong position for leadership roles in industry as well as in academia.
多模式成像,即在一次检查中进行多种成像技术,已经成为现代医疗体系中不可或缺的关键部分,也是研究科学家用来加深对疾病理解的强大工具。然而,由于采集的多模式成像数据的数量和复杂性,以及图像质量和图像采集时间之间的权衡,临床医生和研究科学家在以语义有意义和有效的方式解释、理解和分析采集的数据方面面临着巨大的挑战。因此,对这些丰富的多参数成像数据进行计算机辅助处理、分析和解释的新方法不仅可以显著改进疾病筛查和诊断、疾病治疗计划和管理,而且还可以显著提高对疾病的理解。
提出的研究计划的主要目标是为多模式生物医学图像处理、分析和解释开发新的计算模型和智能算法。将研究和探索四个主要目标:1)用于改进所获取的多模式成像数据的重建和增强的深层图形模型和方法,2)用于更好地表征从所获取的多模式成像数据中捕获的复杂信息的新型深层图形模型,3)用于以可解释的方式从丰富的多模式成像数据中高效和准确地提取定量信息的深层模型驱动的图像分析,以及4)用于高效、准确和可解释的计算机辅助决策的深层模型驱动的人工智能方法。
拟议研究计划的科学和工程成果将改善疾病筛查和诊断、疾病治疗计划和管理,并通过多模式成像提供对疾病特征和机制的新见解,从而对加拿大人的健康和福祉产生重大影响。在拟议的研究计划期间开发的科学知识和技术将通过与Christie Medical、Agfa Healthcare、Hill-Rom Inc.和Elucid Labs等公司的积极合作而转化为工业。此外,HQP将继续在多学科环境中接受图像处理和分析、计算机视觉和人工智能方面的培训,使他们在行业和学术界处于领导地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wong, Alexander其他文献
Real-world effectiveness of sofosbuvir/velpatasvir for the treatment of hepatitis C virus in prison settings
- DOI:
10.2217/fvl-2022-0016 - 发表时间:
2022-04-14 - 期刊:
- 影响因子:3.1
- 作者:
Rosati, Silvia;Wong, Alexander;Jimenez, Elena - 通讯作者:
Jimenez, Elena
Prostate Cancer Detection via a Quantitative Radiomics-Driven Conditional Random Field Framework
- DOI:
10.1109/access.2015.2502220 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Chung, Audrey G.;Khalvati, Farzad;Wong, Alexander - 通讯作者:
Wong, Alexander
Noise-Compensated, Bias-Corrected Diffusion Weighted Endorectal Magnetic Resonance Imaging via a Stochastically Fully-Connected Joint Conditional Random Field Model
- DOI:
10.1109/tmi.2016.2587836 - 发表时间:
2016-12-01 - 期刊:
- 影响因子:10.6
- 作者:
Boroomand, Ameneh;Shafiee, Mohammad Javad;Wong, Alexander - 通讯作者:
Wong, Alexander
ARRSI: Automatic registration of remote-sensing images
- DOI:
10.1109/tgrs.2007.892601 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:8.2
- 作者:
Wong, Alexander;Clausi, David A. - 通讯作者:
Clausi, David A.
A Novel Motion Plane-Based Approach to Vehicle Speed Estimation
- DOI:
10.1109/tits.2018.2847224 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:8.5
- 作者:
Famouri, Mahmoud;Azimifar, Zohreh;Wong, Alexander - 通讯作者:
Wong, Alexander
Wong, Alexander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wong, Alexander', 18)}}的其他基金
Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
- 批准号:
RGPIN-2018-03966 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
- 批准号:
RGPIN-2018-03966 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
- 批准号:
RGPIN-2018-03966 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Integrative Medical Imaging Systems
综合医学成像系统
- 批准号:
1000229272-2013 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Canada Research Chairs
Autonomous 3D Modeling of House Roofs from Remote Sensing Data
根据遥感数据对房屋屋顶进行自主 3D 建模
- 批准号:
531017-2018 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Engage Grants Program
相似国自然基金
图线性绘制优化问题的参数化算法研究
- 批准号:2025JJ50346
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
中国人物画艺术风格在当代动画作品中的创新应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
图形化衬底调控极端电应力下硅基氮化
镓HEMT器件位错缺陷的形成演化机制研
究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Web3D元宇宙的实时渲染关键技术研究和应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
自主可控高端CAX几何图形内核关键技术和产品研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于激光图形化氢化/脱氢相畴结构的二
氧化钒微型驱动器研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
数字孪生图形引擎在文化遗产领域的创新应用
- 批准号:2025JK2049
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向自动驾驶类人决策的驾驶意图形成
机理与识别方法研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于图形化激光诱导石墨烯的智能超疏水防除冰薄膜研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于图形化泛基因组解析黄华占系谱材料优质化育种的遗传基础与规律
- 批准号:
- 批准年份:2024
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
- 批准号:
10757140 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
The integration of laboratory data with computational 3-D modeling to analyze the role of the central amygdala in neuropathic pain
将实验室数据与计算 3D 建模相结合,分析中央杏仁核在神经性疼痛中的作用
- 批准号:
10650977 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
- 批准号:
10643212 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
A simulation platform to predict dose and therapeutic window of immunocytokines
预测免疫细胞因子剂量和治疗窗的模拟平台
- 批准号:
10698708 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Visualization of causality: development and application of graphical models based on mechanisms
因果关系可视化:基于机制的图模型的开发与应用
- 批准号:
23K09740 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Open-source Software Development Supplement for 3D quantitative analysisof mouse models of structural birth defects through computational anatomy
通过计算解剖学对结构性出生缺陷小鼠模型进行 3D 定量分析的开源软件开发补充
- 批准号:
10839199 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Quantitative Modeling Software with Applications to Medical Decision Making
定量建模软件在医疗决策中的应用
- 批准号:
10823037 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别: