Modelling Image Formation and In-Camera Imaging Pipelines
图像形成建模和相机内成像管道
基本信息
- 批准号:RGPIN-2017-05637
- 负责人:
- 金额:$ 4.37万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program is focused on understanding the physical world through images captured by digital cameras. More specifically, I'm interested in what an image can tell us about the real-world environment. To this end, my research focuses on ways to model how physical light coming into the camera is transformed into the final three-channel image (red, green, blue) pixel-based images. This type of image formation is sometimes referred to as "low-level computer vision", which deals with how images are formed and their relationship to the physical world. Low-level computer vision often treats an image as a 2D signal, much like a communication signal. In this way, we can discuss problems such as trying to determine the true signal when it has undergone some degradation (such as sensor noise, or movement during the image process e.g. image blur due to camera motion). Such image formation models can also take into consideration environment factors, such as fog and haze, and how this can be removed through computational methods.
As part of this research program, one of the key components of my work is understanding exactly how digital cameras work. While we like to think of cameras as light-measuring devices, the current design of commodity cameras includes a great deal of additional processing that is applied on board the camera (often referred to as the in-camera processing pipeline). The goal of most camera manufacturers is to make visually pleasing photographs and not necessarily to faithfully capture the imaged scene. While this is ideal for photography, this type of image manipulation is often at odds with models used in low-level computer vision. In particular, in-camera manipulation can modify colours, change local contrast, and substantially distort the original sensor response in a way that makes it challenging to determine the actual nature of the physical environment. One of my research focuses is to design new camera processing pipelines that allow the ability to produce both photographic images and images suitable for scientific purposes. Developing such "hybrid cameras" has the potential for significant impact, as we now are using our cameras (especially those on our mobile devices) for many non-photo-centric tasks (such as document scanning, object identification, medical imaging, colour matching). The long-term prospects of this research program are to shape the future design of consumer cameras and the applications they can be used for.
我的研究项目专注于通过数码相机捕捉的图像来理解物理世界。更具体地说,我感兴趣的是图像可以告诉我们关于现实世界的环境。为此,我的研究重点是如何建模进入相机的物理光如何转换为最终的三通道图像(红,绿色,蓝色)基于像素的图像。这种类型的图像形成有时被称为“低级计算机视觉”,它处理图像如何形成以及它们与物理世界的关系。低级计算机视觉通常将图像视为2D信号,就像通信信号一样。通过这种方式,我们可以讨论一些问题,例如当信号经历了一些退化(例如传感器噪声或图像处理期间的移动,例如由于相机运动导致的图像模糊)时,试图确定真实信号。这种图像形成模型还可以考虑环境因素,例如雾和霾,以及如何通过计算方法去除这些因素。
作为这项研究计划的一部分,我工作的关键组成部分之一是了解数码相机的工作原理。虽然我们喜欢将相机视为光测量设备,但目前商品相机的设计包括大量应用于相机上的附加处理(通常称为相机内处理管道)。大多数相机制造商的目标是制作视觉上令人愉悦的照片,而不一定要忠实地捕捉成像场景。虽然这是摄影的理想选择,但这种类型的图像处理通常与低级计算机视觉中使用的模型不一致。特别是,相机内操纵可以修改颜色,改变局部对比度,并以一种使确定物理环境的实际性质具有挑战性的方式大幅扭曲原始传感器响应。我的研究重点之一是设计新的相机处理管道,使其能够生成摄影图像和适合科学目的的图像。开发此类“混合相机”有可能产生重大影响,因为我们现在正在使用我们的相机(尤其是移动的设备上的相机)来执行许多非以照片为中心的任务(例如文档扫描、对象识别、医学成像、颜色匹配)。这项研究计划的长期前景是塑造消费相机的未来设计及其可用于的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brown, Michael其他文献
Computing Schur complexes
计算 Schur 复合体
- DOI:
10.2140/jsag.2019.9.111 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Brown, Michael;Huang, Hang;Laudone, Robert;Perlman, Michael;Raicu, Claudiu;Sam, Steven;Santos, João - 通讯作者:
Santos, João
The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics
- DOI:
10.1016/j.gsf.2014.02.005 - 发表时间:
2014-07-01 - 期刊:
- 影响因子:8.9
- 作者:
Brown, Michael - 通讯作者:
Brown, Michael
Earth's first stable continents did not form by subduction
- DOI:
10.1038/nature21383 - 发表时间:
2017-03-09 - 期刊:
- 影响因子:64.8
- 作者:
Johnson, Tim E.;Brown, Michael;Smithies, R. Hugh - 通讯作者:
Smithies, R. Hugh
Fulminant amoebic colitis following loperamide use
- DOI:
10.1111/j.1708-8305.2006.00096.x - 发表时间:
2007-01-01 - 期刊:
- 影响因子:25.7
- 作者:
McGregor, Alastair;Brown, Michael;Wright, Stephen G. - 通讯作者:
Wright, Stephen G.
Gender and sexuality I: Intersectional anxieties
- DOI:
10.1177/0309132511420973 - 发表时间:
2012-08-01 - 期刊:
- 影响因子:7.1
- 作者:
Brown, Michael - 通讯作者:
Brown, Michael
Brown, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brown, Michael', 18)}}的其他基金
Modelling Image Formation and In-Camera Imaging Pipelines
图像形成建模和相机内成像管道
- 批准号:
RGPIN-2017-05637 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
Modelling Image Formation and In-Camera Imaging Pipelines
图像形成建模和相机内成像管道
- 批准号:
RGPIN-2017-05637 - 财政年份:2019
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
Modelling Image Formation and In-Camera Imaging Pipelines
图像形成建模和相机内成像管道
- 批准号:
RGPIN-2017-05637 - 财政年份:2018
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
Modelling Image Formation and In-Camera Imaging Pipelines
图像形成建模和相机内成像管道
- 批准号:
RGPIN-2017-05637 - 财政年份:2017
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
- 批准号:41904148
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
Raw-Image微小物体高精度位姿测量法
- 批准号:61105029
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Construction of the Image "Newton as Philosopher": Formation and Influence of "Rule of Reasoning"
“哲学家牛顿”形象的建构:“推理规则”的形成及其影响
- 批准号:
23K12010 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
DL-based CT image formation with characterization and control of resolution and noise
基于深度学习的 CT 图像形成,具有分辨率和噪声的表征和控制
- 批准号:
10666105 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
A Study on the Characteristics and the Formation Process of Body Image of Students with Physical Disabilities in Japan and Korea
日韩身体残疾学生的身体意象特征及形成过程研究
- 批准号:
21J11336 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Modelling Image Formation and In-Camera Imaging Pipelines
图像形成建模和相机内成像管道
- 批准号:
RGPIN-2017-05637 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
Basic Research on the Formation of the View of Japan Created by the "Virtual Image" in the Middle of the 19th Century: Focusing on Its Methodology
19世纪中叶“虚像”日本观形成的基础研究——以方法论为中心
- 批准号:
21K00824 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Do saliency maps accurately predict visual gaze during search image formation
显着图能否准确预测搜索图像形成过程中的视觉凝视
- 批准号:
564557-2021 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
University Undergraduate Student Research Awards
Research on the formation of mythical ancient Izumo image in the region and its historical character
出云地区古代神话形象的形成及其历史特征研究
- 批准号:
20K00982 - 财政年份:2020
- 资助金额:
$ 4.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultraportable Stroke CT Based on Stationary Carbon Nanotube X-ray Source and Deep Learning Image Formation
基于固定碳纳米管X射线源和深度学习成像的超便携式中风CT
- 批准号:
9909721 - 财政年份:2019
- 资助金额:
$ 4.37万 - 项目类别:
Modelling Image Formation and In-Camera Imaging Pipelines
图像形成建模和相机内成像管道
- 批准号:
RGPIN-2017-05637 - 财政年份:2019
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
The Effects and mechanisms of multimedia on image schema formation in foreign language learners
多媒体对外语学习者意象图式形成的影响及机制
- 批准号:
18K02900 - 财政年份:2018
- 资助金额:
$ 4.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)