Real-time Optimization using ANN/Deep Convolutional Neural Network for Lowbush Blueberry Harvesting
使用 ANN/深度卷积神经网络实时优化低丛蓝莓采摘
基本信息
- 批准号:RGPIN-2017-05815
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The agricultural industry will play a vital role in feeding over 9 billion predicted population on the globe by 2050. However, the alarming situation facing this industry is the total number of farm operators in the world is constantly declining. In Canada, it declined by 25% in the last two decades mainly due to an aging agricultural labor force. Lowbush blueberry is a dominant horticultural crop in Canada. The total acreage of a blueberry in Canada was increased by 61% in the last decade. Labour shortage is also an inevitable problem of lowbush blueberry industry. Currently, more than 80% of lowbush blueberry is harvested by mechanical harvester. The mechanical harvester really relies on operator skills and experience for better fruit recovery and quality with less damage to the harvester. However, due to the aging labor force and an extremely short harvesting window for lowbush blueberry (around 3 to 4 weeks), the lowbush blueberry industry has a difficulty to find enough experienced harvester operators. Therefore, harvester automation is an urgent need for the lowbush blueberry industry.
Previously used multiple-sensing and mathematical optimization is not enough to predict the optimal harvesting set-up because so many factors are interrelated. Artificial Neural Network (ANN) was widely used for many agricultural applications however, none of the previous approaches were real-time in field solutions. This research proposes a real-time optimization for optimal lowbush harvesting by accomplishing short term objectives; (i) to develop a sensor fusion system, (ii) to develop an architecture and methodology for a hardware based fast image processing system, and (iii) a real-time modeling utilizing an ANN/Deep Convolutional Neural Network. Based on this research, a deliverable embedded system will be made in the future deriving the optimum parameters using the neural network modeling program and real-time field sensing data.
The real-time embedded system of ANN/ Deep Convolutional Neural Network is a new era of agricultural automation and robotics. The optimization of the harvesting has huge potential to solve labour shortage crisis as it will be utilized for harvester automation and will increase the sustainability of the lowbush blueberry industry. Five percent increase in harvesting efficiency would result in $55 million of revenue to Canadian lowbush blueberry industry per year. The optimization of the harvesting will serve a good foundation for the Bio-systems Automation Research Program as it can be easily transferred to other cropping systems and other agricultural sectors like animal behavior analysis using ANN/ Deep Convolutional Neural Network. Moreover well trained HPQs from this program will work within different agricultural sectors, providing a good foundation of highly skilled Canadian agricultural automation and robotics personnel.
到2050年,农业将在养活地球仪预计超过90亿人口方面发挥至关重要的作用。然而,该行业面临的令人震惊的情况是,世界上农场经营者的总数不断下降。在加拿大,它在过去二十年中下降了25%,主要是由于农业劳动力老龄化。矮丛蓝莓是加拿大的主要园艺作物。在过去的十年里,加拿大蓝莓的总面积增加了61%。劳动力短缺也是低丛蓝莓产业不可避免的问题。目前,80%以上的低丛蓝莓是通过机械收获机收获的。机械收割机真正依赖于操作员的技能和经验,以获得更好的水果回收和质量,同时减少对收割机的损坏。然而,由于劳动力老化和低丛蓝莓的收获窗口极短(约3至4周),低丛蓝莓产业很难找到足够有经验的收割机操作员。因此,收获机自动化是矮丛蓝莓产业的迫切需求。
以前使用的多传感器和数学优化是不够的,以预测最佳的收获设置,因为这么多的因素是相互关联的。人工神经网络(ANN)被广泛用于许多农业应用,然而,以前的方法都没有实时的现场解决方案。本研究提出了一种实时优化的最佳lowbush收获通过实现短期目标;(i)开发传感器融合系统,(ii)开发基于硬件的快速图像处理系统的架构和方法,以及(iii)利用ANN/深度卷积神经网络的实时建模。在此基础上,未来将制作一个可交付的嵌入式系统,使用神经网络建模程序和实时现场传感数据导出最佳参数。
ANN/深度卷积神经网络的实时嵌入式系统是农业自动化和机器人的新时代。收获的优化具有解决劳动力短缺危机的巨大潜力,因为它将用于收获机自动化,并将提高低丛蓝莓产业的可持续性。收获效率提高5%,每年将为加拿大低丛蓝莓产业带来5500万美元的收入。收获的优化将为生物系统自动化研究计划奠定良好的基础,因为它可以很容易地转移到其他种植系统和其他农业部门,如使用ANN/深度卷积神经网络进行动物行为分析。此外,来自该计划的训练有素的HPQ将在不同的农业部门工作,为高技能的加拿大农业自动化和机器人技术人员提供良好的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chang, YoungKi其他文献
Chang, YoungKi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chang, YoungKi', 18)}}的其他基金
Real-time Optimization using ANN/Deep Convolutional Neural Network for Lowbush Blueberry Harvesting
使用 ANN/深度卷积神经网络实时优化低丛蓝莓采摘
- 批准号:
RGPIN-2017-05815 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Real-time Optimization using ANN/Deep Convolutional Neural Network for Lowbush Blueberry Harvesting
使用 ANN/深度卷积神经网络实时优化低丛蓝莓采摘
- 批准号:
RGPIN-2017-05815 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Real-time Optimization using ANN/Deep Convolutional Neural Network for Lowbush Blueberry Harvesting
使用 ANN/深度卷积神经网络实时优化低丛蓝莓采摘
- 批准号:
RGPIN-2017-05815 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Real-time Optimization using ANN/Deep Convolutional Neural Network for Lowbush Blueberry Harvesting
使用 ANN/深度卷积神经网络实时优化低丛蓝莓采摘
- 批准号:
RGPIN-2017-05815 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Real-time Optimization using ANN/Deep Convolutional Neural Network for Lowbush Blueberry Harvesting
使用 ANN/深度卷积神经网络实时优化低丛蓝莓采摘
- 批准号:
RGPIN-2017-05815 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
- 批准号:
2340519 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Development and Optimization of a Digital AC-DC Electropenetrograph for Real-Time Recording of On-host Tick Feeding
用于实时记录宿主蜱摄食的数字交流-直流电渗透仪的开发和优化
- 批准号:
2304787 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
CAREER: Learning for Real-Time Embedded Optimization
职业:学习实时嵌入式优化
- 批准号:
2239771 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Optimization of monitoring, prediction and phenotyping of deterioration of inhospital patients using machine learning and multimodal real time data
使用机器学习和多模态实时数据优化住院患者病情恶化的监测、预测和表型分析
- 批准号:
10735863 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Real-time integrated optimization of measurement and control systems
测控系统实时集成优化
- 批准号:
23K03905 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: RETRO: Toward Safe and Smart Operations via REal-Time Risk-based Optimization
合作研究:RETRO:通过实时基于风险的优化实现安全和智能运营
- 批准号:
2312457 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: RETRO: Toward Safe and Smart Operations via REal-Time Risk-based Optimization
合作研究:RETRO:通过实时基于风险的优化实现安全和智能运营
- 批准号:
2312458 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312979 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
NSF ACED: ROOTS: Real-time Optimization Of Transceiver Systems
NSF ACED:ROOTS:收发器系统的实时优化
- 批准号:
2314813 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant