Efficient methods for the semi-supervised and weakly-supervised analysis of medical images
医学图像半监督和弱监督分析的有效方法
基本信息
- 批准号:RGPIN-2018-05715
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Context Recently, artificial intelligence (AI) techniques have led to substantial improvements in performance for various problems of medical imaging, including image segmentation and reconstruction. However, these techniques often need large amounts of annotated data which are rarely available in real-life applications. This scarcity of annotated data impedes their ability of generalizing to new data, thereby limiting their adoption in clinical practice. In many medical applications, large amounts of unlabeled data are often obtainable, which could be exploited in a semi-supervised setting. The limited efficiency and scalability of current approaches is, however, a major obstacle to using this mass of unlabeled data.
Research objectives and methodology This research aims at developing efficient methods for the segmentation and reconstruction of medical images, that can achieve state-of-the-art performance when annotated data are limited. Toward this goal, two complimentary axes of research will be explored. The first axis proposes to investigate novel approaches based on convolutional neural networks (CNNs) that exploit unlabeled data and low-cost annotations to improve performance when there are few labeled examples. This will be achieved by incorporating strong shape priors and constraints into the training process. The second research axis will investigate efficient and scalable methods based on distributed optimization to segment and reconstruct large images. These methods will accelerate processing times by decomposing complex optimization problems into smaller and easier sub-problems that can be solved in a distributed manner. The broader vision of this program is to make AI techniques more usable in clinical practice, by better exploiting available data and leveraging powerful optimization techniques.
Contributions & impact This research proposes flexible and efficient methods to transfer problem-specific knowledge into data-driven methods like CNNs. By reducing the need for annotated data, these methods will alleviate the work of radiologists and other experts, saving both time and money. Improving the segmentation and reconstruction accuracy will also give clinicians a more reliable and complete information for diagnosis and treatment. Finally, increasing the scalability of current approaches will benefit to medical imaging and various other fields, where the volume and resolution of data is increasing each year.
背景近年来,人工智能(AI)技术在解决包括图像分割和重建在内的各种医学成像问题方面取得了实质性的进步。然而,这些技术通常需要大量的带注释的数据,而这些数据在实际应用中很少使用。这种注释数据的缺乏阻碍了它们推广到新数据的能力,从而限制了它们在临床实践中的采用。在许多医学应用中,通常可以获得大量的未标记数据,这些数据可以在半监督环境中被利用。然而,当前方法有限的效率和可扩展性是使用这些大量未标记数据的主要障碍。
研究目标和方法本研究旨在开发有效的医学图像分割和重建方法,以便在标注数据有限的情况下获得最先进的性能。为了实现这一目标,将探索两个相辅相成的研究轴。第一个轴建议研究基于卷积神经网络(CNN)的新方法,这些方法利用未标记的数据和低成本的注释来提高在有标记的例子很少的情况下的性能。这将通过在培训过程中纳入强大的形状先验条件和约束来实现。第二个研究轴将研究基于分布式优化的高效和可伸缩的大图像分割和重建方法。这些方法将复杂的优化问题分解成更小、更容易的子问题,以分布式方式解决,从而加快处理时间。该计划的更广泛的愿景是通过更好地利用可用的数据和利用强大的优化技术,使人工智能技术在临床实践中更有用。
贡献与影响这项研究提出了灵活而有效的方法,将特定问题的知识转化为数据驱动的方法,如CNN。通过减少对注释数据的需求,这些方法将减轻放射科医生和其他专家的工作,节省时间和金钱。提高分割和重建的准确性也将为临床医生提供更可靠、更完整的诊断和治疗信息。最后,提高现有方法的可扩展性将有利于医学成像和其他各种领域,这些领域的数据量和分辨率每年都在增加。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Desrosiers, Christian其他文献
Graph Convolutions on Spectral Embeddings for Cortical Surface Parcellation
- DOI:
10.1016/j.media.2019.03.012 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:10.9
- 作者:
Gopinath, Karthik;Desrosiers, Christian;Lombaert, Herve - 通讯作者:
Lombaert, Herve
Att-MoE: Attention-based Mixture of Experts for nuclear and cytoplasmic segmentation Att-MoE: Attention-based Mixture of Experts for nuclear and cytoplasmic segmentation
Att-MoE:基于注意力的核和细胞质分割专家组合
- DOI:
10.1016/j.neucom.2020.06.017 - 发表时间:
2020-10-21 - 期刊:
- 影响因子:6
- 作者:
Liu, Jinhua;Desrosiers, Christian;Zhou, Yuanfeng - 通讯作者:
Zhou, Yuanfeng
Deep Radiomic Analysis for Predicting Coronavirus Disease 2019 in Computerized Tomography and X-Ray Images
- DOI:
10.1109/tnnls.2021.3119071 - 发表时间:
2021-10-19 - 期刊:
- 影响因子:10.4
- 作者:
Chaddad, Ahmad;Hassan, Lama;Desrosiers, Christian - 通讯作者:
Desrosiers, Christian
Discretely-constrained deep network for weakly supervised segmentation
- DOI:
10.1016/j.neunet.2020.07.011 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:7.8
- 作者:
Peng, Jizong;Kervadec, Hoel;Desrosiers, Christian - 通讯作者:
Desrosiers, Christian
A quantitative study of shape descriptors from glioblastoma multiforme phenotypes for predicting survival outcome
- DOI:
10.1259/bjr.20160575 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:2.6
- 作者:
Chaddad, Ahmad;Desrosiers, Christian;Tanougast, Camel - 通讯作者:
Tanougast, Camel
Desrosiers, Christian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Desrosiers, Christian', 18)}}的其他基金
Efficient methods for the semi-supervised and weakly-supervised analysis of medical images
医学图像半监督和弱监督分析的有效方法
- 批准号:
RGPIN-2018-05715 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Efficient methods for the semi-supervised and weakly-supervised analysis of medical images
医学图像半监督和弱监督分析的有效方法
- 批准号:
RGPIN-2018-05715 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Efficient methods for the semi-supervised and weakly-supervised analysis of medical images
医学图像半监督和弱监督分析的有效方法
- 批准号:
RGPIN-2018-05715 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Apprentissage profond semi-supervisé pour la segmentation et l'analyse d'images d'équipements de réseau électrique
学徒深度半监督,对电气设备图像进行分割和分析
- 批准号:
536593-2018 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Efficient methods for the semi-supervised and weakly-supervised analysis of medical images
医学图像半监督和弱监督分析的有效方法
- 批准号:
RGPIN-2018-05715 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Forage de données dans les réseaux dynamiques complexes
动态复合体中的饲料
- 批准号:
387044-2010 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Scalable pattern mining and analysis in real-time RIFD data
实时 RIFD 数据中的可扩展模式挖掘和分析
- 批准号:
429872-2011 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
Scalable pattern mining and analysis in real-time RIFD data
实时 RIFD 数据中的可扩展模式挖掘和分析
- 批准号:
429872-2011 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Collaborative Research and Development Grants
Forage de données dans les réseaux dynamiques complexes
动态复合体中的饲料
- 批准号:
387044-2010 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Forage de données dans les réseaux dynamiques complexes
动态复合体中的饲料
- 批准号:
387044-2010 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:NSF: Construction of New Additive and Semi-Implicit General Linear Methods
RII Track-4:NSF:新的加法和半隐式一般线性方法的构造
- 批准号:
2327484 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Semi-permeable capsules for high-throughput single cell multi-omics
用于高通量单细胞多组学的半透胶囊
- 批准号:
10698044 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Myc Transcription Factor Inhibitor Design: Integrating Atomic and Mesoscale with Semi-Supervised Generative Deep Learning Models
Myc 转录因子抑制剂设计:将原子和中尺度与半监督生成深度学习模型相结合
- 批准号:
10463080 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Global analysis of mathematical models with conservation law by semi-analytic methods using the elliptic functions
使用椭圆函数的半解析方法对具有守恒定律的数学模型进行全局分析
- 批准号:
22K13962 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Semi-automated bladder cancer screening using machine learning: clinical validation and implementation.
使用机器学习的半自动膀胱癌筛查:临床验证和实施。
- 批准号:
10349701 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Myc Transcription Factor Inhibitor Design: Integrating Atomic and Mesoscale with Semi-Supervised Generative Deep Learning Models
Myc 转录因子抑制剂设计:将原子和中尺度与半监督生成深度学习模型相结合
- 批准号:
10745272 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Efficient methods for the semi-supervised and weakly-supervised analysis of medical images
医学图像半监督和弱监督分析的有效方法
- 批准号:
RGPIN-2018-05715 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Semi-permeable capsules for high-throughput single cell multi-omics
用于高通量单细胞多组学的半透胶囊
- 批准号:
10569373 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Cooperative Control Robotics and Computer Vision: Development of Semi-Autonomous Temporal Bone and Skull Base Surgery
协作控制机器人和计算机视觉:半自主颞骨和颅底手术的发展
- 批准号:
10283480 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10453558 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别: