Models, methods and inference for non-standard correlated data
非标准相关数据的模型、方法和推理
基本信息
- 批准号:RGPIN-2018-04748
- 负责人:
- 金额:$ 1.17万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The advent of sophisticated tools of measurement has given rise to new modes of data collection resulting in non-standard correlated data, oftentimes involving disparate responses, frequently with a mixture of discrete and continuous responses, or of longitudinal and survival outcomes, and possibly from multiple sources or different study designs. The resulting complex structure typically requires non-standard statistical approaches that usually entail computationally intensive methodologies. These are particularly common in many applications in engineering, finance, and in medicine and health. Conventional tools that generally rely on the assumption that the data, or some suitable transformations of them, follow a Gaussian distribution, do not directly apply in these contexts.
The research proposed here concerns the development of joint models and methodologies for application in non-standard correlated data settings. It pays specific focus on situations involving complex dependence structures arising from data comprising possibly high-dimensional non-standard correlated responses. Particular emphasis is given on development and computational implementation of new methodologies for use by practitioners in engineering and the medical/health sciences. The proposed research is anticipated to yield improved, flexible, and powerful techniques for data analysis in the age of big data.
复杂测量工具的出现产生了新的数据收集模式,导致非标准相关数据,通常涉及不同的反应,经常是离散和连续反应的混合,或纵向和生存结果,可能来自多个来源或不同的研究设计。由此产生的复杂结构通常需要非标准的统计方法,这些方法通常需要计算密集型的方法。这些在工程、金融、医学和健康领域的许多应用中特别常见。传统的工具通常依赖于假设数据,或者对数据进行一些适当的转换,遵循高斯分布,而这些工具并不直接适用于这些情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
deLeon, Alexander其他文献
deLeon, Alexander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('deLeon, Alexander', 18)}}的其他基金
Models, methods and inference for non-standard correlated data
非标准相关数据的模型、方法和推理
- 批准号:
RGPIN-2018-04748 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Models, methods and inference for non-standard correlated data
非标准相关数据的模型、方法和推理
- 批准号:
RGPIN-2018-04748 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Models, methods and inference for non-standard correlated data
非标准相关数据的模型、方法和推理
- 批准号:
RGPIN-2018-04748 - 财政年份:2018
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Multivariate Models and Methods for Correlated Data in Non-Standard Settings
非标准设置中相关数据的多元模型和方法
- 批准号:
261821-2012 - 财政年份:2016
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Multivariate Models and Methods for Correlated Data in Non-Standard Settings
非标准设置中相关数据的多元模型和方法
- 批准号:
261821-2012 - 财政年份:2015
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Multivariate Models and Methods for Correlated Data in Non-Standard Settings
非标准设置中相关数据的多元模型和方法
- 批准号:
261821-2012 - 财政年份:2014
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Multivariate Models and Methods for Correlated Data in Non-Standard Settings
非标准设置中相关数据的多元模型和方法
- 批准号:
261821-2012 - 财政年份:2013
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Multivariate Models and Methods for Correlated Data in Non-Standard Settings
非标准设置中相关数据的多元模型和方法
- 批准号:
261821-2012 - 财政年份:2012
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Issues arising in the joint analysis of mixed categoricals & continuous variables in multivariate mixed data
混合分类联合分析中出现的问题
- 批准号:
261821-2007 - 财政年份:2011
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
- 批准号:
2905812 - 财政年份:2023
- 资助金额:
$ 1.17万 - 项目类别:
Studentship
Can one size fit all? - High-Resolution 3D Genome Spatial Organization Inference with Generalizable Models
一种尺寸可以适合所有人吗?
- 批准号:
10707587 - 财政年份:2023
- 资助金额:
$ 1.17万 - 项目类别:
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Inference and computational methods for regression models in the presence of partially observed network data or high-dimensional capture-recapture data
存在部分观察到的网络数据或高维捕获-重捕获数据的回归模型的推理和计算方法
- 批准号:
RGPIN-2022-03309 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10595510 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Inference and computational methods for regression models in the presence of partially observed network data or high-dimensional capture-recapture data
存在部分观察到的网络数据或高维捕获-重捕获数据的回归模型的推理和计算方法
- 批准号:
DGECR-2022-00441 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Launch Supplement
Emulation methods to improve inference performance for complex models
提高复杂模型推理性能的仿真方法
- 批准号:
2750733 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Studentship
Sequence-based Machine Learning for Inference of Dynamic Cell State Gene Network Models
基于序列的机器学习用于动态细胞状态基因网络模型的推理
- 批准号:
10665735 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Models, methods and inference for non-standard correlated data
非标准相关数据的模型、方法和推理
- 批准号:
RGPIN-2018-04748 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Models, methods and inference for non-standard correlated data
非标准相关数据的模型、方法和推理
- 批准号:
RGPIN-2018-04748 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual