Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
基本信息
- 批准号:RGPIN-2019-04622
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our proposal lies in the domain of geometric analysis, an area of mathematics in which important questions concerning geometric structures are investigated using powerful tools from mathematical analysis and partial differential equations. The proposal comprises several components, some stemming from our recent work, with others focusing on new directions:
-The Calderon problem: The Calderon problem is an inverse problem of significant current interest in research, which is to recover the geometry of a compact Riemannian manifold with boundary from the knowledge of the Dirichlet-to-Neumann map at fixed energy. Several important uniqueness results for this problem have been obtained in the last 15 years under hypotheses that make enable one to use powerful tools such as limiting Carleman weights. We have recently discovered by different methods a series of unexpected non-uniqueness results for the Calderon problem in the case of smooth toric cylinders carrying warped product metrics. We shall pursue this program by studying the Calderon problem in the much more general setting of manifolds with several ends, endowed with smooth conformally Painleve metrics. We shall also consider the related question of stability for the inverse Steklov problem.
-Local energy decay in Myers-Perry geometries: The Myers-Perry geometries are the n-dimensional analogues of the well-known Kerr solution of the 4d Einstein equations, which describes the outer space-time geometry of a rotating black hole in equilibrium. While the analytical properties of Dirac spinors in Kerr have been extensively studied, natural questions such as the local energy decay and long-term behaviour of Dirac spinors have not yet understood beyond n=5 for the Myers-Perry metrics. We propose to investigate these problems in the exterior Myers-Perry geometries and their analytic extensions across the event horizon.
- A ramified Cartan-Kaehler Theorem: The Cartan-Kaehler Theorem is the main existence theorem for integral manifolds of involutive analytic exterior differential systems. It has a wide range of geometric applications, from the existence of local isometric immersions to that of metrics with exceptional holonomy. Its proof rests crucially on the classical Cauchy-Kovalevskaia Theorem. We shall use Leray's ramified version of the latter in order to extend the Cartan-Kaehler Theorem to a setting in which the rank conditions for involutivity are relaxed, giving rise to ramified integral manifolds. This will in turn significantly expand the realm of geometric applications of the Cartan-Kaehler Theorem.
- Symplectic cohomologies for homogeneous symplectic manifolds: Tseng and Yau have recently studied a generalization of Hodge theory to the symplectic setting and have investigated the corresponding cohomologies. We shall study the behaviour of these cohomologies under symplectic reduction, and give a Lie-algebraic description thereof in the case of homogeneous symplectic manifolds.
我们的建议位于几何分析领域,这是一个数学领域,使用数学分析和偏微分方程的强大工具来研究有关几何结构的重要问题。该建议包括几个部分,其中一些来自我们最近的工作,其他部分侧重于新的方向:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kamran, Niky其他文献
Two-step Darboux transformations and exceptional Laguerre polynomials
- DOI:
10.1016/j.jmaa.2011.09.014 - 发表时间:
2012-03-01 - 期刊:
- 影响因子:1.3
- 作者:
Gomez-Ullate, David;Kamran, Niky;Milson, Robert - 通讯作者:
Milson, Robert
LORENTZIAN EINSTEIN METRICS WITH PRESCRIBED CONFORMAL INFINITY
- DOI:
10.4310/jdg/1563242472 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:2.5
- 作者:
Enciso, Alberto;Kamran, Niky - 通讯作者:
Kamran, Niky
Kamran, Niky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kamran, Niky', 18)}}的其他基金
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
- 批准号:
RGPIN-2019-04622 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
- 批准号:
RGPIN-2019-04622 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
- 批准号:
RGPIN-2019-04622 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
- 批准号:
105490-2011 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
- 批准号:
105490-2011 - 财政年份:2017
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
- 批准号:
105490-2011 - 财政年份:2015
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
- 批准号:
105490-2011 - 财政年份:2014
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
- 批准号:
105490-2011 - 财政年份:2013
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
- 批准号:
105490-2011 - 财政年份:2012
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
- 批准号:
105490-2011 - 财政年份:2011
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
- 批准号:11071206
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
- 批准号:10771181
- 批准年份:2007
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Studies on topological and geometric structure analysis and visualization of spatio-temporal data
时空数据拓扑几何结构分析与可视化研究
- 批准号:
23K11020 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
- 批准号:
RGPIN-2019-04622 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
- 批准号:
RGPIN-2019-04622 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Investigation of the Molybdenum Cofactor through Chemical, Biochemical and Biophysical Studies
通过化学、生物化学和生物物理研究研究钼辅因子
- 批准号:
10046549 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
- 批准号:
RGPIN-2019-04622 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Multifaceted studies on dynamical problems in the calculus of variations using geometric measure theory
利用几何测度理论对变分法动力学问题进行多方面研究
- 批准号:
18H03670 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
XAS ELECTRONIC AND GEOMETRIC STRUCTURE STUDIES ON CU CONTAINING METALLOPROTEINS
含铜金属蛋白的 XAS 电子结构和几何结构研究
- 批准号:
8362225 - 财政年份:2011
- 资助金额:
$ 3.64万 - 项目类别:
GEOMETRIC AND ELECTRONIC STRUCTURAL STUDIES OF TRANSITION METAL DITHIOLENES
过渡金属二硫烯的几何和电子结构研究
- 批准号:
8362159 - 财政年份:2011
- 资助金额:
$ 3.64万 - 项目类别:
GEOMETRIC AND ELECTRONIC STRUCTURAL STUDIES OF TRANSITION METAL DITHIOLENES
过渡金属二硫烯的几何和电子结构研究
- 批准号:
8170109 - 财政年份:2010
- 资助金额:
$ 3.64万 - 项目类别:
XAS ELECTRONIC AND GEOMETRIC STRUCTURE STUDIES ON CU CONTAINING METALLOPROTEINS
含铜金属蛋白的 XAS 电子结构和几何结构研究
- 批准号:
8170185 - 财政年份:2010
- 资助金额:
$ 3.64万 - 项目类别:














{{item.name}}会员




