Differential equations and geometric structures on manifolds

流形上的微分方程和几何结构

基本信息

  • 批准号:
    105490-2011
  • 负责人:
  • 金额:
    $ 3.06万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Stated in general terms, my research proposal is concerned with the relationship between differential equations and geometric structures on curved spaces. The proposal has five components which explore specific aspects of this theme, partly through questions motivated by mathematical problems and conjectures coming Physics and partly through problems which are of a more fundamentally geometric nature. Progress on these questions should help improve our understanding of the behavior of solutions of differential equations on curved spaces, help shed further light on some existing conjectures, and also help open new avenues for research. We now list the five components of our proposal. The first project deals with the long term dynamics of waves in higher dimensional axisymmetric black hole geometries, with the AdS/CFT correspondence for the geometries built on certain cohomogeneity one Sasaki-Einstein metrics and with entanglement in Kerr geometry. The second is concerned with instances in which spectral problems for differential operators can be solved at least partially by algebraic methods, and the connections with orthogonal polynomial systems as well as integrable systems. The third deals with the construction of ambi-toric geometries on manifolds and orbifolds, inspired in part by their Lorentzian analogues in General Relativity. The fourth is an attempt to extend the Cartan-Kaehler existence theorem for the existence of integral manifolds of involutive analytic exterior differential systems by using Leray's theory of the ramified Cauchy problem for systems of Cauchy-Kovalevskaia type. Finally the fifth project is an exploration of the behavior of the Ricci curvature for random metrics on spaces of dimension three or higher, using the techniques on the geometry of excursion sets pioneered by Adler and Taylor.
概括地说,我的研究建议是关于曲面空间上的微分方程和几何结构之间的关系。该提案有五个部分,它们探索了这一主题的具体方面,部分是通过由数学问题和未来物理的猜想引发的问题,部分是通过更基本的几何性质的问题。在这些问题上的进展应该有助于提高我们对曲面空间上微分方程解的性态的理解,有助于进一步阐明一些现有的猜想,也有助于开辟研究的新途径。我们现在列出我们提案的五个组成部分。第一个项目研究了高维轴对称黑洞几何中波的长期动力学,建立在某种同齐性的Sasaki-Einstein度规上的ADS/CFT对应,以及Kerr几何中的纠缠。第二部分是关于微分算子的谱问题可以用代数方法至少部分地解决的例子,以及与正交多项式系统和可积系统的联系。第三部分是关于流形上的双环几何的构造,部分灵感来自于它们在广义相对论中的洛伦兹类似。四是利用Leray关于Cauchy-Kovalevskaa型系统的分枝Cauchy问题的理论,推广了对合解析外微分系统积分流形的Cartan-Kaehler存在定理。最后,第五个项目是利用Adler和Taylor首创的游程集几何技巧,探索三维或更高维空间上随机度量的Ricci曲率的行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kamran, Niky其他文献

Two-step Darboux transformations and exceptional Laguerre polynomials
LORENTZIAN EINSTEIN METRICS WITH PRESCRIBED CONFORMAL INFINITY
  • DOI:
    10.4310/jdg/1563242472
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Enciso, Alberto;Kamran, Niky
  • 通讯作者:
    Kamran, Niky

Kamran, Niky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kamran, Niky', 18)}}的其他基金

Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
  • 批准号:
    RGPIN-2019-04622
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
  • 批准号:
    RGPIN-2019-04622
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
  • 批准号:
    RGPIN-2019-04622
  • 财政年份:
    2020
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
  • 批准号:
    RGPIN-2019-04622
  • 财政年份:
    2019
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
  • 批准号:
    105490-2011
  • 财政年份:
    2018
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
  • 批准号:
    105490-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
  • 批准号:
    105490-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
  • 批准号:
    105490-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
  • 批准号:
    105490-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Differential equations and geometric structures on manifolds
流形上的微分方程和几何结构
  • 批准号:
    105490-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

非线性发展方程及其吸引子
  • 批准号:
    10871040
  • 批准年份:
    2008
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目
大气、海洋科学中偏微分方程和随机动力系统的研究
  • 批准号:
    10801017
  • 批准年份:
    2008
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
不可压流体力学方程中的一些问题
  • 批准号:
    10771177
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Partial Differential Equations, geometric aspects and applications
偏微分方程、几何方面和应用
  • 批准号:
    DE230100954
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Early Career Researcher Award
Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
  • 批准号:
    2305038
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
  • 批准号:
    RGPIN-2017-04259
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Geometric Optimization Involving Partial Differential Equations
RUI:涉及偏微分方程的几何优化
  • 批准号:
    2208373
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Geometric Analysis: Investigating the Einstein Equations and Other Partial Differential Equations
几何分析:研究爱因斯坦方程和其他偏微分方程
  • 批准号:
    2204182
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Continuing Grant
Geometric Aspects of Complex Differential Equations
复微分方程的几何方面
  • 批准号:
    EP/W012251/1
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Research Grant
CAREER: Curvature, Topology, and Geometric Partial Differential Equations, with new tools from Applied Mathematics
职业:曲率、拓扑和几何偏微分方程,以及应用数学的新工具
  • 批准号:
    2142575
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了