Scalable Symbolic Control: Computationally Efficient Design of Feedback Control Algorithms to Satisfy Complex Requirements
可扩展的符号控制:满足复杂要求的反馈控制算法的计算高效设计
基本信息
- 批准号:1906164
- 负责人:
- 金额:$ 48.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scalable Symbolic Control: Computationally Efficient Design of Feedback Control Algorithms to Satisfy Complex RequirementsThis project aims to develop design methodology for feedback control algorithms that satisfy complex safety and performance requirements. Rigorous design tools that meet such requirements are of utmost importance in manufacturing, autonomous vehicles, and infrastructure systems, such as smart cities, traffic networks, the power grid and water networks. The growing sophistication of these systems demand equally sophisticated control methods that are applicable to the complex requirements and large-scale models describing their operation. The project addresses this demand with a combination of tools from control theory, which traditionally deals with feedback regulation of dynamical systems around desired set points or trajectories, and formal methods used for verification of software and hardware systems. Merging tools from these areas is an exciting research opportunity but relies on a symbolic representation of continuous dynamical systems studied in control theory to be compatible with the models used in formal methods. Existing tools for obtaining symbolic representations require computations that do not scale well to large systems. To overcome this problem the project will exploit structural system properties inherent to classes of dynamical systems and eliminate key computational bottlenecks. The results will be demonstrated on autonomous docking of ships, a challenging maneuver that continues to be performed manually due to the high risk of collision combined with strict requirements for precision. This system is representative of a wide range of other applications and is an excellent test bed for control algorithms that meet complex requirements.Symbolic control is an increasingly popular approach that translates the control synthesis problem from the continuous- to the discrete-state domain, allowing the designer to address complex control requirements expressed as automata or temporal logic formulas. Indeed, for finite discrete-state transition models, such as those that arise in software and hardware verification and synthesis, the formal methods community has developed number of efficient algorithmic tools to enforce such requirements. Bringing these tools to control theory is an exciting opportunity, but the computations involved in the design procedure do not scale well to systems with large state dimension and complex, nonlinear dynamics. This project aims to overcome key computational bottlenecks and achieve scalability by exploiting structural system properties. The research tasks include: 1) Developing scalable and broadly applicable reachability analysis methods, which are needed when obtaining a discrete-state representation of a continuous-state system; 2) Exploiting sparsity structures and symmetries intrinsic to the dynamical model to dramatically reduce the number of times that reachability computations are invoked, 3) Further improving scalability by first reducing the order and complexity of the dynamical model with a rigorous procedure offering guaranteed error bounds. Successful completion of these research tasks would elevate symbolic control to become a broadly applicable tool for safety-critical systems with complex, nonlinear dynamics. The results of the project will be demonstrated on autonomous docking of ships, a challenging maneuver that continues to be performed manually due to the high risk of collision combined with strict requirements for precision.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可扩展的符号控制:反馈控制算法的计算效率设计,以满足复杂的安全和性能要求本项目旨在开发反馈控制算法的设计方法,以满足复杂的安全和性能要求。满足这些要求的严格设计工具在制造业、自动驾驶汽车和基础设施系统(如智能城市、交通网络、电网和供水网络)中至关重要。这些系统的日益复杂性要求同样复杂的控制方法,适用于复杂的要求和大规模的模型描述其操作。该项目通过控制理论工具的组合来满足这一需求,控制理论传统上处理动态系统围绕所需设定点或轨迹的反馈调节,以及用于验证软件和硬件系统的正式方法。合并这些领域的工具是一个令人兴奋的研究机会,但依赖于控制理论中研究的连续动力系统的符号表示,与形式化方法中使用的模型兼容。用于获得符号表示的现有工具需要不能很好地扩展到大型系统的计算。为了克服这个问题,该项目将利用结构系统固有的动力系统类的属性,并消除关键的计算瓶颈。结果将在船舶的自主对接上展示,这是一项具有挑战性的操作,由于碰撞风险高,加上对精度的严格要求,因此仍需手动执行。该系统是一个广泛的其他应用的代表,是一个很好的测试床的控制算法,满足复杂的requires.Symbolic控制是一个越来越流行的方法,将控制综合问题从连续的离散状态域,允许设计者解决复杂的控制要求表示为自动机或时序逻辑公式。事实上,对于有限的离散状态转换模型,如在软件和硬件验证和综合中出现的那些,形式化方法社区已经开发了许多有效的算法工具来执行这些要求。 将这些工具引入控制理论是一个令人兴奋的机会,但设计过程中涉及的计算并不能很好地扩展到具有大状态维数和复杂非线性动力学的系统。该项目旨在克服关键的计算瓶颈,并通过利用结构系统属性实现可扩展性。研究任务包括:1)开发可扩展和广泛适用的可达性分析方法,这是获得连续状态系统的离散状态表示时所需要的; 2)利用动态模型固有的稀疏结构和对称性来显著减少调用可达性计算的次数,3)通过首先利用提供有保证的误差界限的严格过程来降低动态模型的阶数和复杂度,进一步提高可缩放性。这些研究任务的成功完成将提升符号控制成为一个广泛适用的工具,安全关键系统的复杂,非线性动态。 该项目的成果将在船舶自主对接上得到展示,由于碰撞风险高,加上对精度的严格要求,这是一项具有挑战性的操作,仍然需要手动执行。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interval Reachability Analysis using Second-Order Sensitivity
- DOI:10.1016/j.ifacol.2020.12.2344
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Pierre-Jean Meyer;M. Arcak
- 通讯作者:Pierre-Jean Meyer;M. Arcak
Reachability analysis using dissipation inequalities for uncertain nonlinear systems
- DOI:10.1016/j.sysconle.2020.104736
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:He Yin;A. Packard;M. Arcak;P. Seiler
- 通讯作者:He Yin;A. Packard;M. Arcak;P. Seiler
Data-Driven Reachable Set Computation using Adaptive Gaussian Process Classification and Monte Carlo Methods
- DOI:10.23919/acc45564.2020.9147918
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Alex Devonport;M. Arcak
- 通讯作者:Alex Devonport;M. Arcak
Data-Driven Reachability Analysis with Christoffel Functions
- DOI:10.1109/cdc45484.2021.9682860
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Alex Devonport;Forest Yang;L. Ghaoui;M. Arcak
- 通讯作者:Alex Devonport;Forest Yang;L. Ghaoui;M. Arcak
Estimating Reachable Sets with Scenario Optimization
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Alex Devonport;M. Arcak
- 通讯作者:Alex Devonport;M. Arcak
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murat Arcak其他文献
Editorial to the collection of papers dedicated to Eduardo D. Sontag on the occasion of his 70th birthday
- DOI:
10.1007/s00498-024-00381-w - 发表时间:
2024-02-23 - 期刊:
- 影响因子:1.800
- 作者:
Murat Arcak;Yacine Chitour;Patrick De Leenheer;Lars Grüne - 通讯作者:
Lars Grüne
Synthesizing Neural Network Controllers with Closed-Loop Dissipativity Guarantees
综合具有闭环耗散保证的神经网络控制器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Neelay Junnarkar;Murat Arcak;Peter Seiler - 通讯作者:
Peter Seiler
Feedback tuning of bifurcations
分岔的反馈调整
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Luc Moreau;E. D. Sontag;Murat Arcak - 通讯作者:
Murat Arcak
Symmetry-based Abstraction Algorithm for Accelerating Symbolic Control Synthesis
基于对称性的加速符号控制综合的抽象算法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hussein Sibai;Sacha Huriot;Tyler Martin;Murat Arcak - 通讯作者:
Murat Arcak
Symmetry reduction for dynamic programming
- DOI:
10.1016/j.automatica.2018.08.024 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:
- 作者:
John Maidens;Axel Barrau;Silvère Bonnabel;Murat Arcak - 通讯作者:
Murat Arcak
Murat Arcak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murat Arcak', 18)}}的其他基金
Collaborative Research: CPS: Medium: Population Games for Cyber-Physical Systems: New Theory with Tools for Transportation Management under Extreme Demand
合作研究:CPS:媒介:网络物理系统的群体博弈:极端需求下运输管理的新理论和工具
- 批准号:
2135791 - 财政年份:2022
- 资助金额:
$ 48.84万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Efficient Traffic Management: A Formal Methods Approach
CPS:协同:协作研究:高效交通管理:形式化方法
- 批准号:
1446145 - 财政年份:2015
- 资助金额:
$ 48.84万 - 项目类别:
Standard Grant
A compositional approach for performance certification of large-scale engineering systems
大型工程系统性能认证的组合方法
- 批准号:
1405413 - 财政年份:2014
- 资助金额:
$ 48.84万 - 项目类别:
Standard Grant
Diffusively Coupled Networks: Synchronization, De-Synchronization, and Structure
扩散耦合网络:同步、去同步和结构
- 批准号:
1101876 - 财政年份:2011
- 资助金额:
$ 48.84万 - 项目类别:
Standard Grant
A Structurally-Based Approach to Nonlinear Analysis and Design of Networks
基于结构的网络非线性分析和设计方法
- 批准号:
0852750 - 财政年份:2008
- 资助金额:
$ 48.84万 - 项目类别:
Standard Grant
A Structurally-Based Approach to Nonlinear Analysis and Design of Networks
基于结构的网络非线性分析和设计方法
- 批准号:
0801389 - 财政年份:2008
- 资助金额:
$ 48.84万 - 项目类别:
Standard Grant
Northeast Student Workshop On Nonlinear and Hybrid Control. The workshop will be held at Rensselaer Polytechnic Institute on April 1-2, 2005.
东北学生非线性和混合控制研讨会。
- 批准号:
0456957 - 财政年份:2005
- 资助金额:
$ 48.84万 - 项目类别:
Standard Grant
CAREER: Structure and Robustness in Nonlinear Control: Challenges from Fuel Cell Technology
职业:非线性控制的结构和鲁棒性:燃料电池技术的挑战
- 批准号:
0238268 - 财政年份:2003
- 资助金额:
$ 48.84万 - 项目类别:
Standard Grant
Exploratory Research On Fuel Cell Control: Design Challenges For Emerging Applications
燃料电池控制的探索性研究:新兴应用的设计挑战
- 批准号:
0226094 - 财政年份:2002
- 资助金额:
$ 48.84万 - 项目类别:
Standard Grant
相似海外基金
CPS: Small: Neuro-Symbolic Learning and Control with High-Level Knowledge Inference
CPS:小型:具有高级知识推理的神经符号学习和控制
- 批准号:
2304863 - 财政年份:2023
- 资助金额:
$ 48.84万 - 项目类别:
Standard Grant
EAGER: A hybrid dialogue system architecture for symbolic control of deep learning networks
EAGER:用于深度学习网络符号控制的混合对话系统架构
- 批准号:
2232307 - 财政年份:2022
- 资助金额:
$ 48.84万 - 项目类别:
Standard Grant
Design theory for estimation and control of nonlinear systems by using symbolic computation for rings of differential operators
微分算子环符号计算非线性系统估计与控制的设计理论
- 批准号:
21K21285 - 财政年份:2021
- 资助金额:
$ 48.84万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Sampling-guided symbolic control framework under changing environments
变化环境下采样引导的符号控制框架
- 批准号:
21K14191 - 财政年份:2021
- 资助金额:
$ 48.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Nonlinear control combining symbolic and numerical computations by using algebraic geometry
使用代数几何结合符号和数值计算的非线性控制
- 批准号:
18J22093 - 财政年份:2018
- 资助金额:
$ 48.84万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Symbolic dynamics and model-based control of autonomous vehicles
自动驾驶车辆的符号动力学和基于模型的控制
- 批准号:
506419-2016 - 财政年份:2018
- 资助金额:
$ 48.84万 - 项目类别:
Collaborative Research and Development Grants
Symbolic dynamics and model-based control of autonomous vehicules
自动驾驶车辆的符号动力学和基于模型的控制
- 批准号:
506419-2016 - 财政年份:2017
- 资助金额:
$ 48.84万 - 项目类别:
Collaborative Research and Development Grants
Symbolic Solver for Optimal Control Problems
最优控制问题的符号求解器
- 批准号:
477343-2014 - 财政年份:2014
- 资助金额:
$ 48.84万 - 项目类别:
Engage Grants Program
Control System Design of Nonlinear Systems via Numeric and Symbolic Computation
通过数值和符号计算的非线性系统控制系统设计
- 批准号:
20760280 - 财政年份:2008
- 资助金额:
$ 48.84万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Applications of numeric-symbolic computations to the design of robust control systems
数值符号计算在鲁棒控制系统设计中的应用
- 批准号:
18540123 - 财政年份:2006
- 资助金额:
$ 48.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)