Numerical Methods for Models of Biological Systems

生物系统模型的数值方法

基本信息

  • 批准号:
    RGPIN-2019-06946
  • 负责人:
  • 金额:
    $ 1.17万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

After experimentation and theory, computation is the third pillar of the scientific method. Especially in biology, computer simulations are used to understand phenomena, suggest illuminating and cost-effective experiments, and make predictions. Increasingly, our understanding of biological systems is being encapsulated in simulations. The incredible amount of available experimental data and a desire to have very detailed models necessitates having fast, accurate, and parallelizable numerical methods. Mathematics plays an essential role in creating and analysing numerical methods. I am developing numerical methods for large systems of ordinary differential equations that describe the electrical activity of and genetic-biochemical reaction networks in populations of cells. Examples of biological systems that couple genetics, biochemistry, and electrophysiology are the circadian (approximately 24) clock, the retina, and nearly all developmental processes. Populations of coupled oscillators are common in biological systems and have historically been the focus of mathematical analysis and simulation. Oscillator populations include the pacemaker of the heart, pancreatic islets that secrete insulin, populations of fireflies, and many regions of the brain. A numerical method of my creation, the population density particle method, enables fast and accurate simulation of populations of noisy coupled oscillators. I am working to make this method more broadly applicable, improve its performance, and put it on a sound theoretical foundation. With some modification, this method can also be used for parameter fitting, a common task for modellers. I am also studying a random walk based numerical method for partial differential equations that describe hydrodynamics, electrodiffusion, and spatially extended biochemical reactions. When these equations model biological systems, it is often the case that intricate boundaries and complicated boundary conditions prevent simulations from being fast or accurate. I expect my approach to overcome the challenges associated with boundaries. I will investigate high order methods for numerically stiff ordinary differential equations, parallelizable methods, pre-computation techniques, using graphical processing units for acceleration, low-rank approximation, machine learning techniques, grid-free methods, particle methods, and random walk methods to address numerical challenges commonly faced when simulating biological models. This will result in faster and more accurate simulations that will ultimately enable new insights into many biological problems. I will publicly distribute quality, usable implementations of my numerical methods so that they may be used as building blocks by others, creating a community of scientific discovery.
继实验和理论之后,计算是科学方法的第三个支柱。特别是在生物学领域,计算机模拟被用来理解现象、提出具有启发性和成本效益的实验,并做出预测。我们对生物系统的理解越来越多地体现在模拟中。大量的可用实验数据和对非常详细的模型的渴望需要快速、准确和可并行的数值方法。数学在创建和分析数值方法中起着至关重要的作用。 我正在开发大型常微分方程系统的数值方法,该系统描述细胞群中的电活动和遗传生化反应网络。结合遗传学、生物化学和电生理学的生物系统的例子包括昼夜节律(大约 24)时钟、视网膜和几乎所有的发育过程。耦合振荡器群体在生物系统中很常见,并且历来是数学分析和模拟的焦点。振荡器群体包括心脏起搏器、分泌胰岛素的胰岛、萤火虫群体以及大脑的许多区域。我创造的一种数值方法,即群体密度粒子法,可以快速、准确地模拟噪声耦合振荡器的群体。我正在努力使该方法具有更广泛的适用性,提高其性能,并为其奠定坚实的理论基础。经过一些修改,该方法还可以用于参数拟合,这是建模者的常见任务。我还在研究一种基于随机游走的偏微分方程数值方法,用于描述流体动力学、电扩散和空间扩展的生化反应。当这些方程对生物系统进行建模时,通常会出现复杂的边界和复杂的边界条件导致模拟无法快速或准确的情况。我希望我的方法能够克服与边界相关的挑战。 我将研究数值刚性常微分方程的高阶方法、可并行方法、预计算技术、使用图形处理单元进行加速、低阶近似、机器学习技术、无网格方法、粒子方法和随机游走方法,以解决模拟生物模型时常见的数值挑战。这将带来更快、更准确的模拟,最终将为许多生物问题带来新的见解。我将公开分发我的数值方法的高质量、可用的实现,以便其他人可以将它们用作构建块,创建一个科学发现社区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stinchcombe, Adam其他文献

Stinchcombe, Adam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stinchcombe, Adam', 18)}}的其他基金

Numerical Methods for Models of Biological Systems
生物系统模型的数值方法
  • 批准号:
    RGPIN-2019-06946
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Models of Biological Systems
生物系统模型的数值方法
  • 批准号:
    RGPIN-2019-06946
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Models of Biological Systems
生物系统模型的数值方法
  • 批准号:
    RGPIN-2019-06946
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Models of Biological Systems
生物系统模型的数值方法
  • 批准号:
    DGECR-2019-00416
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Launch Supplement
Development of a mathematical model of metabolism in pancreatic beta cells
胰腺β细胞代谢数学模型的开发
  • 批准号:
    369071-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.17万
  • 项目类别:
    University Undergraduate Student Research Awards
Graduate Research in Mathematical Medicine
数学医学研究生研究
  • 批准号:
    361995-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Postgraduate Scholarships - Master's
Tumour growth and control
肿瘤生长和控制
  • 批准号:
    353882-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 1.17万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
  • 批准号:
    2347546
  • 财政年份:
    2024
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Standard Grant
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
  • 批准号:
    2240180
  • 财政年份:
    2023
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Continuing Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325196
  • 财政年份:
    2023
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Standard Grant
Numerical Methods for Models of Biological Systems
生物系统模型的数值方法
  • 批准号:
    RGPIN-2019-06946
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Models of Biological Systems
生物系统模型的数值方法
  • 批准号:
    RGPIN-2019-06946
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
  • 批准号:
    2110774
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Standard Grant
Numerical Methods for Deterministic and Stochastic Phase Field Models
确定性和随机相场模型的数值方法
  • 批准号:
    2110728
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Continuing Grant
Numerical Methods for Nonlocal Models with Applications to Multiscale and Nonlinear Systems
非局部模型的数值方法及其在多尺度和非线性系统中的应用
  • 批准号:
    2111608
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Standard Grant
Numerical Methods for Financial Market Models
金融市场模型的数值方法
  • 批准号:
    2491302
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了