Computer Vision Systems to Analyse Face and Body Movements, to Automated the Assessment of Physical Health, Mobility, and Safety in Natural Settings and Over Time
计算机视觉系统可分析面部和身体运动,自动评估自然环境中的身体健康、移动性和安全性
基本信息
- 批准号:RGPIN-2020-04184
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My area of research is the development of computer vision systems and algorithms for intelligent health monitoring and rehabilitation technologies. Over the next five years I will focus my work on two important topics in this area: 1) using and advancing recent developments in machine learning to improve how temporal and longitudinal information is incorporated in computer vision health assessment, and 2) fairness and bias in computer vision systems, particularly with respect to old age and disability.
1) Longitudinal health data often contains large amounts of missing information and is almost always irregularly sampled. Principled approaches to model missing data and irregular sampling include Gaussian Processes and, more recently, Neural Ordinary Differential Equations. My research will augment and advance these approaches to take advantage of additional information, including the patterns of missing information and the temporal distribution of samples. I will also investigate how Transformer Networks could be applied to process long-term trends in healthcare image/video data and in relation to other parameters of health or relevant information.
2) My work has identified fairness and bias issues related to the performance of state-of-the-art computer vision facial analysis models on faces of older adults with a physical or cognitive disability, e.g. stroke or dementia. This is an important limiting factor in employing computer systems in healthcare solutions. Deep learning models used to obtain best performing results on standard benchmarks are typically trained on hundreds of thousands to millions of training examples. It is not practical to collect representative examples of this size from various clinical populations to include in the training data. Patient data and identifiable health records (e.g. face images) are highly sensitive and access is often restricted. A more realistic solution is to collect targeted represented training sets and to adapt state-of-the-art models trained on standard benchmarks datasets to the target population via transfer learning. In my work so far, I have examined commonly used transfer techniques, and have also developed and evaluated novel transfer techniques for this purpose. Using these methods, the performance of facial analysis models on target populations improves, but the gap in performance between clinical and healthy populations persists. Over the next few years, I plan to expand my work in this area and, specifically, explore the use of counterfactual inference and uncertainty quantification to improve the performance of transfer learning techniques, particularly as related to computer vision systems used in facial and body movement analysis.
This program of research will train seven HQPs and will result in innovative solutions to reduce bias and to better incorporate long-term temporal information in computer vision systems.
我的研究领域是开发用于智能健康监测和康复技术的计算机视觉系统和算法。在接下来的五年里,我将把工作重点放在这一领域的两个重要主题上:1)使用和推进机器学习的最新发展,以改善时间和纵向信息如何纳入计算机视觉健康评估; 2)计算机视觉系统的公平性和偏见,特别是在老年和残疾方面。
1)纵向健康数据通常包含大量缺失信息,并且几乎总是不规则地采样。对缺失数据和不规则采样进行建模的原则性方法包括高斯过程和最近的神经常微分方程。我的研究将增强和推进这些方法,以利用额外的信息,包括缺失信息的模式和样本的时间分布。我还将研究如何将Transformer Networks应用于处理医疗图像/视频数据的长期趋势,以及与其他健康参数或相关信息的关系。
2)我的工作已经确定了与最先进的计算机视觉面部分析模型在有身体或认知障碍的老年人脸上的表现相关的公平和偏见问题,例如中风或痴呆。这是在医疗保健解决方案中采用计算机系统的重要限制因素。用于在标准基准测试中获得最佳性能结果的深度学习模型通常在数十万到数百万个训练示例上进行训练。从各种临床人群中收集这种规模的代表性示例以包括在训练数据中是不切实际的。患者数据和可识别的健康记录(例如面部图像)高度敏感,访问通常受到限制。一个更现实的解决方案是收集有针对性的代表性训练集,并通过迁移学习将在标准基准数据集上训练的最先进模型适应目标人群。到目前为止,在我的工作中,我已经研究了常用的转移技术,并为此开发和评估了新的转移技术。使用这些方法,面部分析模型对目标人群的性能得到改善,但临床人群和健康人群之间的性能差距差距仍然存在。在接下来的几年里,我计划扩大我在这一领域的工作,特别是探索使用反事实推理和不确定性量化来提高迁移学习技术的性能,特别是与面部和身体运动分析中使用的计算机视觉系统相关。
该研究计划将培训七名HQP,并将产生创新的解决方案,以减少偏差,并更好地将长期时间信息纳入计算机视觉系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taati, Babak其他文献
Vision-based approach for long-term mobility monitoring: Single case study following total hip replacement
- DOI:
10.1682/jrrd.2013.12.0263 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:0
- 作者:
Dolatabadi, Elham;Taati, Babak;Mihailidis, Alex - 通讯作者:
Mihailidis, Alex
Estimating Parkinsonism Severity in Natural Gait Videos of Older Adults With Dementia
- DOI:
10.1109/jbhi.2022.3144917 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:7.7
- 作者:
Sabo, Andrea;Mehdizadeh, Sina;Taati, Babak - 通讯作者:
Taati, Babak
Pain Expressions in Dementia: Validity of Observers' Pain Judgments as a Function of Angle of Observation
- DOI:
10.1007/s10919-019-00303-4 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:2.1
- 作者:
Browne, M. Erin;Hadjistavropoulos, Thomas;Taati, Babak - 通讯作者:
Taati, Babak
Autonomous Unobtrusive Detection of Mild Cognitive Impairment in Older Adults
- DOI:
10.1109/tbme.2015.2389149 - 发表时间:
2015-05-01 - 期刊:
- 影响因子:4.6
- 作者:
Akl, Ahmad;Taati, Babak;Mihailidis, Alex - 通讯作者:
Mihailidis, Alex
Interdisciplinary development of manual and automated product usability assessments for older adults with dementia: lessons learned
- DOI:
10.3109/17483107.2015.1063714 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:2.2
- 作者:
Boger, Jennifer;Taati, Babak;Mihailidis, Alex - 通讯作者:
Mihailidis, Alex
Taati, Babak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taati, Babak', 18)}}的其他基金
Computer Vision Systems to Analyse Face and Body Movements, to Automated the Assessment of Physical Health, Mobility, and Safety in Natural Settings and Over Time
计算机视觉系统可分析面部和身体运动,自动评估自然环境中的身体健康、移动性和安全性
- 批准号:
RGPIN-2020-04184 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Computer Vision Systems to Analyse Face and Body Movements, to Automated the Assessment of Physical Health, Mobility, and Safety in Natural Settings and Over Time
计算机视觉系统可分析面部和身体运动,自动评估自然环境中的身体健康、移动性和安全性
- 批准号:
RGPIN-2020-04184 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Vision-Based Evaluation of Mobility, Physical Health, and Rehabilitation Progress in Natural Settings
基于视觉的自然环境中行动能力、身体健康和康复进展评估
- 批准号:
435653-2013 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Vision-Based Evaluation of Mobility, Physical Health, and Rehabilitation Progress in Natural Settings
基于视觉的自然环境中行动能力、身体健康和康复进展评估
- 批准号:
435653-2013 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Vision-Based Evaluation of Mobility, Physical Health, and Rehabilitation Progress in Natural Settings
基于视觉的自然环境中行动能力、身体健康和康复进展评估
- 批准号:
435653-2013 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
RFID technology to identify study participants and automated recording of video gait data
RFID 技术可识别研究参与者并自动记录视频步态数据
- 批准号:
499955-2016 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Engage Grants Program
Vision-Based Evaluation of Mobility, Physical Health, and Rehabilitation Progress in Natural Settings
基于视觉的自然环境中行动能力、身体健康和康复进展评估
- 批准号:
435653-2013 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Vision-Based Evaluation of Mobility, Physical Health, and Rehabilitation Progress in Natural Settings
基于视觉的自然环境中行动能力、身体健康和康复进展评估
- 批准号:
435653-2013 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Vision-Based Evaluation of Mobility, Physical Health, and Rehabilitation Progress in Natural Settings
基于视觉的自然环境中行动能力、身体健康和康复进展评估
- 批准号:
435653-2013 - 财政年份:2013
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Augmented reality head mounted display calibration
增强现实头戴式显示器校准
- 批准号:
461482-2013 - 财政年份:2013
- 资助金额:
$ 2.11万 - 项目类别:
Engage Grants Program
相似国自然基金
老年人群视障风险VISION管控模式构建与实证研究
- 批准号:71974198
- 批准年份:2019
- 资助金额:48.5 万元
- 项目类别:面上项目
相似海外基金
Computer Vision Systems to Analyse Face and Body Movements, to Automated the Assessment of Physical Health, Mobility, and Safety in Natural Settings and Over Time
计算机视觉系统可分析面部和身体运动,自动评估自然环境中的身体健康、移动性和安全性
- 批准号:
RGPIN-2020-04184 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Overcoming bias in computer vision: Building fairer systems and training diverse leaders
职业:克服计算机视觉中的偏见:建立更公平的系统并培训多元化的领导者
- 批准号:
2145198 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
ACESO: Computer Vision Algorithms for Computer-Assisted Surgical Systems
ACESO:计算机辅助手术系统的计算机视觉算法
- 批准号:
567101-2021 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Alliance Grants
FAI: Towards Holistic Bias Mitigation in Computer Vision Systems
FAI:迈向计算机视觉系统中的整体偏差缓解
- 批准号:
2041009 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
ACESO: Computer Vision Algorithms for Computer-Assisted Surgical Systems
ACESO:计算机辅助手术系统的计算机视觉算法
- 批准号:
567101-2021 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Alliance Grants
Computer Vision Systems to Analyse Face and Body Movements, to Automated the Assessment of Physical Health, Mobility, and Safety in Natural Settings and Over Time
计算机视觉系统可分析面部和身体运动,自动评估自然环境中的身体健康、移动性和安全性
- 批准号:
RGPIN-2020-04184 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
CCRI: Planning: Collaborative Research: Planning to Develop a Low-Power Computer Vision Platform to Enhance Research in Computing Systems
CCRI:规划:协作研究:规划开发低功耗计算机视觉平台以加强计算系统研究
- 批准号:
1925713 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
CCRI: Planning: Collaborative Research: Planning to Develop a Low-Power Computer Vision Platform to Enhance Research in Computing Systems
CCRI:规划:协作研究:规划开发低功耗计算机视觉平台以加强计算系统研究
- 批准号:
1925514 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Lifelong computer vision systems
终生计算机视觉系统
- 批准号:
FL130100102 - 财政年份:2013
- 资助金额:
$ 2.11万 - 项目类别:
Australian Laureate Fellowships
REU Site: Research on Computer Vision and Multi-Agent Systems
REU 站点:计算机视觉和多智能体系统研究
- 批准号:
0850825 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant