Decentralized Data Analytics and Optimization Methods for Physical Asset Management
实物资产管理的去中心化数据分析和优化方法
基本信息
- 批准号:RGPIN-2020-05477
- 负责人:
- 金额:$ 3.79万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nature of the Proposed Research
The existing data-driven prognostics models for a network of distributed physical assets are centralized and reliant on the availability of assets' sensors, failures and anomaly data. The issue of data scarcity is usually tackled by aggregation of data from similar assets to create a larger data pool for diagnosis. However, if the similar assets belong to various enterprises, they may be reluctant to share their raw asset data with each other, or send it to a central server for processing. In addition, the current optimization models for maintenance and task allocation and scheduling are centralized. These models do not consider the objectives and preferences of various stakeholders involved in the process, and require access to stakeholders' private information, such as their production schedules and the status/availability of their assets. However, many Internet of Things (IoT) assets and cyber-physical systems (CPS) used in cloud manufacturing, smart grids, connected vehicles, and healthcare are geographically distributed and owned by different enterprises, which make the existing models no longer applicable or appropriate for these assets. Realizing the potential of recent technological advancements in providing real-time connectivity, data processing, and information sharing, the proposed research aims to develop novel decentralized solutions for prognostics, maintenance scheduling optimization, and real-time task allocation and scheduling optimization of a network of distributed IoT assets.
Anticipated Outcomes
The proposed research program will advance knowledge for distributed IoT asset management in Cloud-Edge infrastructures. The decentralized prognostic models will enhance failure prediction accuracy by aggregating the contributions from multiple organizations in a global model while allowing the organizations to keep their data private. This more accurate failure prediction will significantly lower maintenance costs, and decrease the negative impacts of failures on the environment, economy and society. The decentralized optimization models for maintenance, task allocation, and scheduling will result in hierarchical and collaborative knowledge creation, better utilization of resources, higher energy efficiency, more resilience, and lower computation time of the optimization process. These outcomes will be achieved while organizations still can maximize their own benefits without fully sharing their private data. The proposed models will help organizations in transition towards full realization and utilization of emerging technologies, such as cloud and edge computing. Highly qualified personnel (HQP) trained in this program will possess a unique skillset in data analytics, mathematical modeling and optimization which will create exceptional career opportunities for them in academia or industry.
拟议研究的性质
现有的分布式物理资产网络的数据驱动的动态模型是集中的,并依赖于资产的传感器,故障和异常数据的可用性。数据稀缺的问题通常通过从类似资产中汇总数据来解决,以创建更大的诊断数据池。然而,如果类似的资产属于不同的企业,它们可能不愿意彼此共享其原始资产数据,或者将其发送到中央服务器进行处理。此外,目前用于维护和任务分配和调度的优化模型是集中的。这些模型不考虑过程中涉及的各个利益相关者的目标和偏好,并且需要访问利益相关者的私人信息,例如他们的生产计划和他们的资产的状态/可用性。然而,云制造、智能电网、联网车辆和医疗保健中使用的许多物联网(IoT)资产和网络物理系统(CPS)在地理上分布并由不同的企业拥有,这使得现有模型不再适用于这些资产。实现最新技术进步在提供实时连接,数据处理和信息共享方面的潜力,拟议的研究旨在为分布式物联网资产网络的自动化,维护调度优化以及实时任务分配和调度优化开发新的分散解决方案。
预期成果
拟议的研究计划将推进云边缘基础设施中分布式物联网资产管理的知识。分散的预测模型将通过将多个组织的贡献聚合在一个全球模型中,同时允许组织保持其数据的私密性,从而提高故障预测的准确性。这种更准确的故障预测将大大降低维护成本,并减少故障对环境,经济和社会的负面影响。维护、任务分配和调度的分散优化模型将导致分层和协作的知识创建、更好的资源利用、更高的能源效率、更强的弹性和更低的优化过程的计算时间。这些结果将在组织仍然可以最大限度地提高自身利益的同时实现,而无需完全共享其私人数据。拟议的模型将帮助组织过渡到充分实现和利用新兴技术,如云计算和边缘计算。在该计划中培训的高素质人员(HQP)将拥有数据分析,数学建模和优化方面的独特技能,这将为他们在学术界或工业界创造特殊的职业机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taghipour, Sharareh其他文献
Optimal job scheduling and inspection of a machine with delayed failure
- DOI:
10.1080/00207543.2019.1680900 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:9.2
- 作者:
Azimpoor, Samareh;Taghipour, Sharareh - 通讯作者:
Taghipour, Sharareh
Optimum inspection interval for a system under periodic and opportunistic inspections
- DOI:
10.1080/0740817x.2011.618176 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:0
- 作者:
Taghipour, Sharareh;Banjevic, Dragan - 通讯作者:
Banjevic, Dragan
OPTIMISATION OF NON-PERIODIC INSPECTION AND MAINTENANCE FOR MULTICOMPONENT SYSTEMS
- DOI:
10.17531/ein.2018.2.20 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:2.5
- 作者:
Babishin, Vladimir;Hajipour, Yassin;Taghipour, Sharareh - 通讯作者:
Taghipour, Sharareh
UV Disinfection Robots: A Review.
- DOI:
10.1016/j.robot.2022.104332 - 发表时间:
2023-03 - 期刊:
- 影响因子:4.3
- 作者:
Mehta, Ishaan;Hsueh, Hao-Ya;Taghipour, Sharareh;Li, Wenbin;Saeedi, Sajad - 通讯作者:
Saeedi, Sajad
Incidence of invasive breast cancer in the presence of competing mortality: the Canadian National Breast Screening Study
- DOI:
10.1007/s10549-012-2113-6 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:3.8
- 作者:
Taghipour, Sharareh;Banjevic, Dragan;Jardine, Andrew K. S. - 通讯作者:
Jardine, Andrew K. S.
Taghipour, Sharareh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taghipour, Sharareh', 18)}}的其他基金
Decentralized Data Analytics and Optimization Methods for Physical Asset Management
实物资产管理的去中心化数据分析和优化方法
- 批准号:
RGPIN-2020-05477 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Decentralized Data Analytics and Optimization Methods for Physical Asset Management
实物资产管理的去中心化数据分析和优化方法
- 批准号:
RGPIN-2020-05477 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Real-time Optimization of Production Scheduling
生产排程实时优化
- 批准号:
549679-2019 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别:
Alliance Grants
Optimization models for evidence-based reliability and maintenance decisions
基于证据的可靠性和维护决策的优化模型
- 批准号:
436122-2013 - 财政年份:2019
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Developing methods for measuring social, economic, and environmental impacts of maintenance activities for physical assets
开发测量实物资产维护活动的社会、经济和环境影响的方法
- 批准号:
539205-2019 - 财政年份:2019
- 资助金额:
$ 3.79万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Home Office National Crime and Justice Lab Policy: Crime Data Analytics UKRI Policy Fellowship
内政部国家犯罪和司法实验室政策:犯罪数据分析 UKRI 政策奖学金
- 批准号:
ES/Y004930/1 - 财政年份:2024
- 资助金额:
$ 3.79万 - 项目类别:
Fellowship
CellScope: A marketplace for recycling/upcycling Battery Cells from e-waste powered by traceable health analytics data
CellScope:从电子垃圾中回收/升级电池的市场,由可追踪的健康分析数据提供支持
- 批准号:
10114372 - 财政年份:2024
- 资助金额:
$ 3.79万 - 项目类别:
SME Support
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 3.79万 - 项目类别:
Standard Grant
REU Site: Multidisciplinary Graph Data Analytics
REU 网站:多学科图数据分析
- 批准号:
2349486 - 财政年份:2024
- 资助金额:
$ 3.79万 - 项目类别:
Standard Grant
Project North AI - a new data and analytics platform that uses AI to support the financing and distribution of independent film
Project North AI - 一个新的数据和分析平台,利用人工智能支持独立电影的融资和发行
- 批准号:
10103511 - 财政年份:2024
- 资助金额:
$ 3.79万 - 项目类别:
Investment Accelerator
Research Coordination Network (RCN) for Privacy Preserving Data Sharing and Analytics
用于隐私保护数据共享和分析的研究协调网络 (RCN)
- 批准号:
2413978 - 财政年份:2024
- 资助金额:
$ 3.79万 - 项目类别:
Standard Grant
Conference: Workshop on Sports Analytics to Strengthen Data Science Undergraduate Curriculum
会议:加强数据科学本科课程的体育分析研讨会
- 批准号:
2309891 - 财政年份:2024
- 资助金额:
$ 3.79万 - 项目类别:
Standard Grant
Integrated data led analytics for financial planners
面向财务规划人员的集成数据主导分析
- 批准号:
10058015 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Collaborative R&D
Trust-Oriented Data Analytics in Online Social Networks
在线社交网络中面向信任的数据分析
- 批准号:
DP230100676 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Projects
Data Analytics for Urban Environmental Planning
城市环境规划数据分析
- 批准号:
2888288 - 财政年份:2023
- 资助金额:
$ 3.79万 - 项目类别:
Studentship